Что представляет собой твердость?
Твердость любого материала является его важной характеристикой, поскольку от этого зависит стойкость и долговечность изготавливаемых конструкций. А так как четкого определения нет, то сам термин можно «расшифровать» так – это свойство материала оказывать сопротивление проникновению в него другого тела (инструмента)
Эта характеристика позволяет оценить качество многих объектов:
- металла (сплавы);
- керамики;
- древесины;
- пластика;
- камня;
- графита.
Помимо этого, твердость влияет на степень обработки того или иного материала. То есть чем он тверже, тем труднее с ним работать. Справедливо и обратное. Поэтому с деревом приятно иметь дело при изготовлении различных поделок.
У разных специалистов свое понятие твердости. К примеру, в области минералогии под этим определением понимается сопротивление одного материала к появлению царапин при воздействии другого объекта.
В металлургии несколько иначе понимают, что такое твердость – сопротивляемость пластической деформации. Но основное определение, на которое ссылается большинство специалистов любой профессии, уже приведено в самом начале раздела.
Тем не менее твердость может проявляться по-разному:
- жесткость;
- сопротивляемость:
- царапанию;
- истиранию;
- резанию;
деформация:
- изгиб;
- излом;
- изменение формы.
Чем выше величина твердости, тем большая степень сопротивляемости у материала. Исходя из такого многообразия проявления такого свойства, существуют разные способы по его измерению.
Метод Бринелля
При определении твердости цветных металлов используют метод Бринелля, который заключается во вдавливании металлического шарика в поверхность детали, последующем измерении диаметра отпечатка и перевода значений в HB (см. табл №2). Для проведения описанной манипуляции нужен специальный аппарат, однако за неимением оного можно использовать все тот же старый добрый Роквелл (индентор «Шарик», нагрузка 100кгс). Таким образом можно контролировать мягкие металлы: алюминий, медь, латунь, бронзу.
Современные твердомеры имеют продвинутый интерфейс и могут подключаться к компьютеру, переводить значения твердости из одного метода в другой автоматически. Такое оборудование удобное в использовании и не требует высокой квалификации оператора, только вот стоимость его не всегда доступна. К ультразвуковым твердомерам тоже есть претензии по поводу точности измерений. Приходишь к выводу, что лучше проверенное годами старое, чем сомнительное новое по заоблачным ценам. Если вам нужно точно контролировать твердость после термообработки приобретите в термичку Роквелл советского образца, они сделаны очень качественно и их ресурс практически неограничен. Такой Роквелл обеспечит точность и широту измерений. Более дешевый вариант (но безотказный), определение твердости с помощью набора тарированных напильников, хотя это уже совсем другая история.
Способы перехода между шкалами
Определив диаметр отпечатка с помощью специального оборудования, можно с помощью таблиц определить твердость. Таблица твердости металлов – проверенный помощник в вычислении данного механического параметра. Так, если известно значение по Бринеллю, можно легко определить соответствующее число Виккерса или Роквелла.
Пример некоторых значений соответствия:
Диаметр отпечатка, мм | Метод исследования | ||||
Бринелля | Роквелла | Виккерса | |||
A | C | B | |||
3,90 | 241 | 62,8 | 24,0 | 99,8 | 242 |
4,09 | 218 | 60,8 | 20,3 | 96,7 | 218 |
4,20 | 206 | 59,6 | 17,9 | 94,6 | 206 |
4,99 | 143 | 49,8 | — | 77,6 | 143 |
Таблица твердости металлов составлена на основе экспериментальных данных и имеет высокую точность. Также существуют графические зависимости твердости по Бринеллю от содержания углерода в железоуглеродистом сплаве. Так, в соответствии с такими зависимостями, для стали с количеством карбона в составе равному 0,2% она составляет 130 НВ.
Понятие твердости
Твердость – свойство материалов, характеризующее способность проникновения одного, более твердого, тела в другое. Также эта характеристика определяет устойчивость к пластической деформации или разрушению поверхностных слоев при оказании сильного давления.
Все методы определения твердости материалов можно разделить на несколько основных групп:
- Статические. Подобные методы характеризуются тем, что нагрузка постепенно возрастает. Время выдержки может быть разным — все зависит от особенностей применяемого метода.
- Динамические характеризуются тем, что нагрузка на образец подается с определенной кинетической энергией. При этом показатель твердости является менее точным, так как при динамической нагрузке возникает определенная отдача из-за упругости материала. Результаты подобных испытаний зачастую называют твердостью материалов при ударе.
- Кинетические основаны на непрерывной регистрации показателей во время проведения испытаний, что позволяет получить не только конечный, но и промежуточный результат. Для этого применяется специальное оборудование.
Измерение твердости инструмента
Кроме этого, классификация методов определения твердости проводится по принципу приложенной нагрузки. Выделяют следующие способы испытания образца:
- Вдавливание является на сегодняшний день наиболее распространенным способом определения рассматриваемого показателя.
- При отскоке проводится замер того, как высоко боек отлетит от поверхности испытуемого образца. В данном случае просчет твердости проводится по показателю сопротивления упругой деформации. Методы подобного типа довольно часто применяются для контроля качества прокатных валиков и изделий с большими размерами.
- Методы, основанные на царапании и резании, сегодня применяются крайне редко. Были они разработаны два столетия назад.
Как правило, в твердомерах есть деталь, которая оказывает воздействие на испытываемую заготовку. Примером можно назвать стальные шарики различного диаметра и алмазные наконечники с формой пирамиды. Некоторые из применяемых на сегодняшний день методов рассмотрим подробнее.
Твердость по Бринеллю – суть метода
Для определения твердости используют прибор, составленный из измерительного блока и пресса. Наконечник пресса – стальной шарик. Его именуют индентором. Диаметр шарика соответствует ГОСТу 9012 – 59 (ИСО 6506-81, ИСО 410-82), установленному в 1990-лм году. Разрешены 3 показателя: 2,5, 5 и 10 миллиметров.
Нужный индентор выбирают так, чтобы отпечаток от него лежал в пределах 0,2-0,7 диаметра шарика. Измерение твердости по Бринеллю производится либо стальным шариком, либо шариком из карбида вольфрама. Последний, позволяет узнать твердость материалов, превышающих показатель обычной стали.
Карбидный индентор, как правило, нужен для инструментальных сплавов. Шарик из обычной стали используют, измеряя твердость древесины, меди, алюминия, дюраля, нержавейки, стекла. То есть, твердомер применяют не только к металлам.
Метод измерения твердости по Бринеллю состоит из 2-х нагрузок. Сначала, пресс опускают для пробной. Небольшим надавливанием устанавливают начальное положение индентора. После, сообщают уже солидный вес, держат определенное время, потом, измеряют диаметр следа. Звучит «стройно», но есть сложность.
По краям отпечатка образуются навалы и наплывы материала. Из-за них диаметр, глубина могут быть неточными. Твердость по методу Бринелля измеряют до упругого восстановления, то есть до возвращения материала в первоначальную форму. Это возвращение может быть неполным. Тогда, фиксируется его степень.
В схожем методе Роквелла упругого восстановления не дожидаются, да и в качестве индентора используют не только металлические шары, но и алмазные конусы. Это стоит учитывать, замеряя твердость по Бринеллю и Роквеллу. Для чистоты эксперимента можно добавить еще один метод, главное, соблюсти нюансы исследований и уметь соотнести их результаты. Об этом и поговорим.
Числа твердости HRC для некоторых деталей и инструментов
Детали и инструменты | Число твердости HRC |
Головки откидных болтов, гайки шестигранные, рукоятки зажимные | 33…38 |
Головки шарнирных винтов, концы и головки установочных винтов, оси шарниров, планки прижимные и съемные, головки винтов с внутренними шестигранными отверстиями, палец поводкового патрона | 35…40 |
Шлицы круглых гаек | 36…42 |
Зубчатые колеса, шпонки, прихваты, сухари к станочным пазам | 40…45 |
Пружинные и стопорные кольца, клинья натяжные | 45…50 |
Винты самонарезающие, центры токарные, эксцентрики, опоры грибковые и опорные платики, пальцы установочные, цанги | 50…60 |
Гайки установочные, контргайки, сухари к станочным пазам, эксцентрики круговые, кулачки эксцентриковые, фиксаторы делительных устройств, губки сменные к тискам и патронам, зубчатые колеса | 56…60 |
Рабочие поверхности калибров — пробок и скоб | 56…64 |
Копиры, ролики копирные | 58…63 |
Втулки кондукторные, втулки вращающиеся для расточных борштанг | 60…64 |
Косвенные методы
Косвенных методов всего два – ультразвуковой и динамический. Эти методы не напрямую измеряют твердость, а лишь оценивают значение твердости металла в зависимости от других физических свойств.
2.1. Измерение твердости ультразвуком
заключается в фиксации степени изменения (затухания) частоты колебаний стержня с закрепленным на конце индентором при внедрении в поверхность образца. Чем мягче металл, тем больше глубина проникновения индентора и, соответственно, площадь его контакта с металлом, тем выше степень затухания частоты колебаний (в ультразвуковом диапазоне). Метод практически не имеет ограничений по массе и размерам испытуемых изделий, оставляет едва заметный отпечаток, применим для измерения твердости поверхностно упрочненных слоев и изделий со сложной конструкцией (шестерни, подшипники, метизы и т.д.). Ограниченно применяется на изделиях с крупнозернистой структурой.
2.2. Динамический метод реализует зависимость скорости отскока твердого тела от твердости на поверхности соударения. Чем мягче металл, тем больше энергии удара уходит на формирование отпечатка (пластическая деформация) и тем меньше скорость отскока бойка с твердосплавным шариком. Динамический метод применим для крупных, массивных изделий с весом не менее 5 кг и толщиной стенки не менее 10 мм. Подходит для измерения твердости, в том числе и на литых изделиях. Менее чувствителен к качеству поверхности, чем ультразвуковой метод.
2.3. Оба косвенных метода получили распространение в виде портативных, электронных приборов. Измерение твердости переносным твердомером
основано на правильном выборе метода контроля (ультразвук или динамика) и использовании корректной калибровки прибора. Обычно портативные твердомеры изначально откалиброваны по стали на стальныхмерах твердости и имеют возможность пользовательской калибровки на других металлах и сплавах при наличии образцов с известной твердостью.
Преимущества переносных твердомеров NOVOTEST очевидны: мобильность, портативность, автономность, высокая скорость проведения измерений. Также стоит отметить наличие в электронных приборах возможности измерения твердости по нескольким шкалам, архивации и статистической обработки данных, связи с компьютером.
Сравнение шкал измерения твёрдости
материал предоставил СИДОРОВ Александр Владимирович
Твёрдость
– свойство материала сопротивляться внедрению в него другого, более твёрдого тела – индентора.
Для измерения твёрдости существует несколько шкал (методов измерения), наиболее распространёнными среди которых являются :
- метод Бринелля (HB) – твёрдость определяется по диаметру отпечатка, оставляемому металлическим шариком, вдавливаемым в поверхность. Твёрдость вычисляется как отношение усилия, приложенного к шарику, к площади отпечатка. Размерность единиц твёрдости по Бринеллю – МПа. Метод не применяется для тонких материалов и материалов с большой твёрдостью;
- метод Роквелла (HRA, HRB, HRC) – твёрдость определяется по относительной глубине вдавливания металлического шарика или алмазного конуса в поверхность тестируемого материала. Твёрдость вычисляется по формуле :HR = HRmax – (H – h) / 0,002 , гдеHRmax – максимальная твёрдость по Роквеллу (по шкалам A и C составляет 100 единиц, а по шкале B – 130 единиц),(H – h) – разность глубин погружения индентора (в миллиметрах) после снятия основной нагрузки и до её приложения (при предварительном нагружении). Твёрдость, определённая по этому методу, является безразмерной величиной. Метода Роквелла проще в реализации, но обладает меньшей точностью по сравнению с методами Бринелля и Виккерса. Не допускается проверка образцов с толщиной менее десятикратной глубины проникновения наконечника;
- метод Виккерса (HV) – твёрдость определяется по площади отпечатка, оставляемого четырёхгранной алмазной пирамидкой, вдавливаемой в поверхность. Твёрдость вычисляется как отношение нагрузки, приложенной к пирамидке, к площади отпечатка. Размерность единиц твёрдости по Виккерсу – МПа. Позволяет определять твёрдость азотированных и цементированных поверхностей, а также тонких листовых материалов :, но обладает пониженной точностью в нижнем диапазоне (для мягких материалов).
Результаты измерения твёрдости по методам Роквелла и Виккерса могут быть переведены с помощью таблиц в единицы твёрдости по методу Бринелля (таблица 1)
Зная твёрдость по Бринеллю, можно рассчитать предел прочности и текучести материала, что важно для прикладных инженерных задач :. где σв
где σв
– предел прочности, МПа;σт – предел текучести, МПа.
Таблица 1 – Перевод результатов измерения твёрдости
Шкала Бринелля, HB | Шкала Роквелла, HRB (HRC) | Шкала Виккерса, HV |
100 | 52,4 | 100 |
105 | 57,5 | 105 |
110 | 60,9 | 110 |
115 | 64,1 | 115 |
120 | 67,0 | 120 |
125 | 69,8 | 125 |
130 | 72,4 | 130 |
135 | 74,7 | 135 |
140 | 76,6 | 140 |
145 | 78,3 | 145 |
150 | 79,9 | 150 |
155 | 81,4 | 155 |
160 | 82,8 | 160 |
165 | 84,2 | 165 |
170 | 85,6 | 170 |
175 | 87,0 | 175 |
180 | 88,3 | 180 |
185 | 89,5 | 185 |
190 | 90,6 | 190 |
195 | 91,7 | 195 |
200 | 92,8 | 200 |
205 | 93,8 | 205 |
210 | 94,8 | 210 |
215 | 95,7 | 215 |
220 | 96,6 | 220 |
225 | 97,5 | 225 |
230 | 98,4 | 230 |
235 | 99,2 | 235 |
240 | 100,0 | 240 |
245 | (21,2) | 245 |
250 | (22,1) | 250 |
255 | (23,0) | 255 |
260 | (23,9) | 260 |
265 | (24,8) | 265 |
270 | (25,6) | 270 |
275 | (26,4) | 275 |
280 | (27,2) | 280 |
285 | (28,0) | 285 |
290 | (28,8) | 290 |
295 | (29,5) | 295 |
300 | (30,2) | 300 |
310 | (31,6) | 310 |
319 | (33,0) | 320 |
328 | (34,2) | 330 |
336 | (35,3) | 340 |
344 | (36,3) | 350 |
352 | (37,2) | 360 |
360 | (38,1) | 370 |
368 | (38,9) | 380 |
376 | (39,7) | 390 |
384 | (40,5) | 400 |
392 | (41,3) | 410 |
400 | (42,1) | 420 |
408 | (42,9) | 430 |
416 | (43,7) | 440 |
425 | (44,5) | 450 |
434 | (45,3) | 460 |
443 | (46,1) | 470 |
(47,5) | 490 | |
(48,2) | 500 | |
(49,6) | 520 | |
(50,8) | 540 | |
(52,0) | 560 | |
(53,1) | 580 | |
(54,2) | 600 | |
(55,4) | 620 | |
(56,5) | 640 | |
(57,5) | 660 | |
(58,4) | 680 | |
(59,3) | 700 | |
(60,2) | 720 | |
(61,1) | 740 | |
(62,0) | 760 | |
(62,8) | 780 | |
(63,6) | 800 | |
(64,3) | 820 | |
(65,1) | 840 | |
(65,8) | 860 | |
(66,4) | 880 | |
(67,0) | 900 | |
(69,0) | 1114 | |
(72,0) | 1220 |
Перевод значений твёрдости следует использовать лишь в тех случаях, когда невозможно испытать материал при заданных условиях. Полученные переводные числа твёрдости являются лишь приближёнными и могут быть неточными для конкретных случаев. Строго говоря, такое сравнение чисел твёрдости, полученных разными методами и имеющих разную размерность, лишено всякого физического смысла, но, тем не менее, имеет вполне определённую практическую ценность.
Источник статьи: https://eam.su/sravnenie-shkal-izmereniya-tvyordosti.html
Таблица соотношений между числами твердости по Бринеллю, Роквеллу, Виккерсу, Шору
Указанные значения твердости по Роквеллу, Виккерсу и Шору соответствуют значениям твердости по Бринеллю, определенным с помощью шарика диаметром 10 мм.
По Роквеллу | По Бринеллю | По Виккерсу (HV) | По Шору | |||
HRC | HRA | HRB | Диаметр отпечатка | HB | ||
65 | 84,5 | — | 2,34 | 688 | 940 | 96 |
64 | 83,5 | — | 2,37 | 670 | 912 | 94 |
63 | 83 | — | 2,39 | 659 | 867 | 93 |
62 | 82,5 | — | 2,42 | 643 | 846 | 92 |
61 | 82 | — | 2,45 | 627 | 818 | 91 |
60 | 81,5 | — | 2,47 | 616 | — | — |
59 | 81 | — | 2,5 | 601 | 756 | 86 |
58 | 80,5 | — | 2,54 | 582 | 704 | 83 |
57 | 80 | — | 2,56 | 573 | 693 | — |
56 | 79 | — | 2,6 | 555 | 653 | 79,5 |
55 | 79 | — | 2,61 | 551 | 644 | — |
54 | 78,5 | — | 2,65 | 534 | 618 | 76,5 |
53 | 78 | — | 2,68 | 522 | 594 | — |
52 | 77,5 | — | 2,71 | 510 | 578 | — |
51 | 76 | — | 2,75 | 495 | 56 | 71 |
50 | 76 | — | 2,76 | 492 | 549 | — |
49 | 76 | — | 2,81 | 474 | 528 | — |
48 | 75 | — | 2,85 | 461 | 509 | 65,5 |
47 | 74 | — | 2,9 | 444 | 484 | 63,5 |
46 | 73,5 | — | 2,93 | 435 | 469 | — |
45 | 73 | — | 2,95 | 429 | 461 | 61,5 |
44 | 73 | — | 3 | 415 | 442 | 59,5 |
42 | 72 | — | 3,06 | 398 | 419 | — |
40 | 71 | — | 3,14 | 378 | 395 | 54 |
38 | 69 | — | 3,24 | 354 | 366 | 50 |
36 | 68 | — | 3,34 | 333 | 342 | — |
34 | 67 | — | 3,44 | 313 | 319 | 44 |
32 | 67 | — | 3,52 | 298 | 302 | — |
30 | 66 | — | 3,6 | 285 | 288 | 40,5 |
28 | 65 | — | 3,7 | 269 | 271 | 38,5 |
26 | 64 | — | 3,8 | 255 | 256 | 36,5 |
24 | 63 | 100 | 3,9 | 241 | 242 | 34,5 |
22 | 62 | 98 | 4 | 229 | 229 | 32,5 |
20 | 61 | 97 | 4,1 | 217 | 217 | 31 |
18 | 60 | 95 | 4,2 | 207 | 206 | 29,5 |
— | 59 | 93 | 4,26 | 200 | 199 | — |
— | 58 | — | 4,34 | 193 | 192 | 27,5 |
— | 57 | 91 | 4,4 | 187 | 186 | 27 |
— | 56 | 89 | 4,48 | 180 | 179 | 25 |
Измерение твердости («hardness testing»)
Измерение твердости металлов – твердометрия («hardness testing») или дюрометрический анализ является основным неразрушающим методом оценки прочностных характеристик при экспертизе металлов. Если давать каноническое определение, то твердость – это способность материала сопротивляться пластической деформации. Твердометрия крайне широко используется в металловедческой экспертизе, благодаря скорости и простоте проведения исследования. Зачастую не нужна даже пробоподготовка, а твердость измеряют на готовом изделии.
Теперь о том, как же проводится измерение твердости. Определенной формы индентор (о формах которого поговорим ниже) вдавливается в исследуемы материал с заданной нагрузкой в течении регламентированного периода времени (5-15 с.). После снятия нагрузки в материале остается след от индентора – вмятина, площадь которой определяют. Отношение вдавливающей нагрузки к площади полученного отпечатка и является значением твердости, измеряется в кгс/мм2.
Методов твердости существует множество, все они отличаются только типом индентора, а принцип везде один и тот же. В экспертизе металлов основными видами измерения твердости являются:
измерение твердости по Бриннелю (HB).
измерение твердости по Виккерсу (HV);
измерение твердости по Роквеллу (HR);
Если говорить
Теперь давайте о каждом методе измерения твердости поподробнее.
Метод твердости по Бриннелю разработал и впервые применил на практике инженер из Швеции Юхан Бриннель. Данный способ измерения твердости заключается во вдавливании в исследуемый металл стального шарика диаметром от 1 до 10 мм. Недостатком данного метода является большой диаметр отпечатка и невозможность его использовать на высокотвердых материалах. Твердость по Бриннелю используют в основном для аттестации цветных сплавов и чугунов.
В 1914 г. свой способ измерения твердости предложили однофамильцы Роквелл Хью и Станли из США. Индентором в данном методе является стальной шарик диаметром одна шестнадцатая дюйма или алмазный конус с углом при вершине 120°. По Роквеллу можно определяют твердость образцов из закаленных сталей, что не позволяет сделать по методу Бриннелю.
В методе определения твердости по Виккерсу в качестве индентора используется квадратная алмазная пирамидка с углом у вершины 136°.
Данный способ широко используется при экспертизе закаленных сталей, высокопрочных покрытий, сварных швов. Существуют приборы микротвердости по Виккерсу, которые работают в паре с оптическим микроскопом и позволяют определять твердость отдельных структурных составляющих стали, например твердость пластинки видманшеттового феррита. для своих исследований использует микротвердомер, представленный на фото.
Твердость очень хорошо коррелирует с прочностными характеристиками, в частности с пределом прочности. Используя экспериментально определенные характеристики, можно измерив неразрушающим методом твердость, рассчитать предел прочность стали. Средний коэффициент для средней марки стали будет равен примерно 0,3, не зависимо от способа определения твердости. Так например, если твердость исследованного образца составляет 220 кгс/мм2, то примерный предел прочности будет около 660 МПа.
Кратко расскажу об экзотических, то есть редко применяемых в металловедческой экспертизе методах измерениях твердости.
Метод Мооса или метод царапания – твердость определяют по глубине царапины оставленной индентором.
Методы Шора: отскока – твердость определяют по высоте отскока стального шарика от исследуемого материала и метод вдавливания – вдавливаются разнообразные инденторы, по отпечатку определяют твердость. Используют в основном для резин и пластмасс.
<<<�предыдущая статья следующая статья>>>
Измерение микротвердости
Метод измерения микротвердости регламентирован ГОСТ 9450. Определение микротвердости (твердости в микроскопически малых объемах) проводят при исследовании отдельных структурных составляющих сплавов, тонких покрытий, а также при измерении твердости мелких деталей. Прибор для определения микротвердости состоит из механизма для вдавливания алмазной пирамиды под небольшой нагрузкой и металлографического микроскопа. В испытываемую поверхность вдавливают алмазную пирамиду под нагрузкой 0,05…5 Н.
Микротвердость измеряют путем вдавливания в образец (изделие) алмазного индентора под действием статической нагрузки Р в течении определенного времени выдержки т. Число твердости определяют (как и по Виккерсу) делением приложенной нагрузки в Н или кгс на условную площадь боковой поверхности полученного отпечатка в мм2.
Основным вариантом испытания является так называемый метод восстановленного отпечатка, когда размеры отпечатков определяются после снятия нагрузки. Для случая, когда требуется определение дополнительных характеристик материала (упругое восстановление, релаксация, ползучесть при комнатной температуре и др.) допускается проводить испытание по методу невосстановленного отпечатка. При этом размеры отпечатка определяют на глубине вдавливания индентора в процессе приложения нагрузки.
Практически микротвердость определяют по стандартным таблицам дня конкретной формы индентора, нагрузки Р и полученных в испытании размеров диагоналей отпечатка.
В качестве инденторов используют алмазные наконечники разных форм и размеров в зависимости от назначения испытании микротвердости. Основным и наиболее распространенным нконечником является четырехгранная алмазная пирамида с квадратым основанием (по форме подобна индентору, применяющемуся при определении твердости по Виккерсу).
Число микротвердости обозначают цифрами, характеризующими величину твердости со стоящим перед ними символом H с указанием индекса формы наконечника, например, Н□ =3000. Допускается указывать после индекса формы наконечника величину прилагаемой нагрузки, например: Н□ 0,196 =3000 – число микротвердости 3000 Н/мм2, полученное при испытании с четырех гранной пирамидой при нагрузке 0,196 Н. Размерность микротвердости (Н/мм2 или кгс/мм2) обычно не указывают. Если микротвердость определяли по методу невосстановленного отпечанка, то к индексу формы наконечника добавляют букву h (Н□h).
Соотношение значений твердости
При сопоставлении значений твердости, полученных разными методами, между собой и с механическими свойствами материалов необходимо помнить, что приводимые в литературных источниках таблицы или зависимости для такого сопоставительного перевода являются чисто эмпирическими. Физического смысла такой перевод лишен, так как при вдавливании paзличных по форме и размерам инденторов и с разной нагрузкой твердость определяется при совершенно различных напряженных состояниях материала. Даже при одном и том же способе измерения твердости значение сильно зависит от нагрузки: при меньших нагрузках значения твердости получаются более высокими.
Выше были рассмотрены основные методы контроля твердости. Существуют и другие методики контроля, которые основаны на косвенных измерениях значений механических свойств. Например электрические, магнитные, акустические и т.д. Все эти методы основаны на составлении экспериментальных корреляционных таблиц “измеряемый параметр – параметр механических свойств”, где все параметры постоянны (химический состав металла, номер плавки, количество загрязнений), а меняются лишь табличные параметры. Такие методы на производстве практически не работают, т.к. например химический состав металлов по ГОСТам требуется в селекте, т.е. может быть в заданном пределе и меняться от плавки к плавке. Составление градуировочных таблиц на каждую партию металла – очень трудоёмкая работа.
https://www.dcpt.ru
Понятие твердости
Твердость материала – это стойкость к разрушению при внедрении во внешний слой более твердого материала. Другими словами, способность к сопротивлению деформирующим усилиям (упругой или пластической деформации).
Определение твердости металлов производится посредством внедрения в образец твердого тела, именуемого индентором. Роль индентора выполняет: металлически шарик высокой твердости; алмазный конус или пирамида.
После воздействия индентора на поверхности испытуемого образца или детали остается отпечаток, по размеру которого определяется твердость. На практике используются кинематические, динамические, статические способы измерения твердости.
https://youtube.com/watch?v=tJsDHGPNuG0
В основе кинематического метода лежит составление диаграммы на основе постоянно регистрирующихся показаний, которые изменяются по мере вдавливания инструмента в образец. Здесь прослеживается кинематика всего процесса, а не только конечного результата.
Динамический метод заключается в следующем. Измерительный инструмент воздействует на деталь. Обратная реакция позволяет рассчитать затраченную кинетическую энергию. Данный метод позволяет проводить испытание на твердость не только поверхности, но и некоторого объема металла.
Статические методы – это неразрушающие способы, позволяющие определить свойства металлов. Методы основаны на плавном вдавливании и последующей выдержке в течение некоторого времени. Параметры регламентируются методиками и стандартами.
Прилагаемая нагрузка может прилагаться:
- вдавливанием;
- царапанием;
- резанием;
- отскоком.
На основе проводимых испытаний составляется таблица, в которой указываются материалы, прилагаемые нагрузки и полученные результаты.
Понятие
Данным термином в материаловедении называют механическое свойство, которое определяет устойчивость к разрушению под воздействием других, более плотных веществ. Иначе можно сказать так: это сопротивляемость деформациям от давления. При этом учитываются и пластичные, и упругие изменения.
От характеристики зависит множество процессов и условий:
- Износостойкость – это есть то, насколько долго может быть использован элемент. В том числе срок износа, поскольку для каждой детали, например автомобильной, наступает время, когда по естественным причинам ее нужно менять. Но чем тверже элемент, тем дольше он будет служить в определенных условиях.
- Возможность различных видов металлообработки – одни технологии применяются только к мягким сплавам, а другие могут быть использованы и для прочных.
- Сопротивление давлению и другим усилиям характерно для вала или подшипника, на которые действуют силы центробежная и трения.
- Способность использовать материал в качестве инструмента для более податливой поверхности. Инструментальная сталь является настолько крепкой, что применяется для изготовления фрез для фрезерных станков, сверл и прочих изделий.
Это далеко не полный перечень того, на что влияет твердость металла после того, как мы дали ему определение. Не каждое используемое вещество берется с одинаковыми характеристиками. Что делается прежде всего для увеличения данного параметра? Сперва берем сырье, очищаем от примесей, а затем подвергаем химической и температурной обработке. А именно: в состав добавляем различные легирующие компоненты, повышающие это качество, например:
- Хром. Увеличивается прочность и устойчивость к коррозии, незначительно уменьшается пластичность и подверженность магнитным силам. Если более 13% хрома, то сплав называют нержавеющим.
- Вольфрам. Очень сильно повышается содержание твердых соединений – карбидов. Дополнительное свойство – снижение хрупкости после отпуска.
- Ванадий. Тоже возрастает сопротивление деформациям.
- Марганец. Чтобы увидеть эффект, вещества должно быть не менее 1%. Резко взлетает стойкость к ударным нагрузкам.
От чего зависит твердость металлов по этому классу:
- От наличия легирующих добавок, перечисленных выше.
- От естественных свойств сырья.
- От термообработки. С этой целью помогает закалка – материал нагревают сверх определенной критической точки, кристаллическая решетка меняется, и после охлаждения закаленная сталь становится очень надежной.
- От цементации – способом диффузии образец насыщается углеродом. Такому методу подвергаются только низкоуглеродистые или легированные части.
- От старения – оно может быть естественным или искусственным. В первом случае со временем протекают процессы, которые не затрагивают микроструктуру, но важны на общем уровне. Во втором применяется термообработка с целью химического и термального увеличения срока эксплуатации – состаривание.
- От наклепывания на поверхность. Это пластическое изменение структуры вещества, приводящее к повышению прочности.
- От обработки лазером. Лазерная установка наплавляет прочный слой.
Кроме того, некоторые этапы металлообработки (прокатка, ковка и закалка) с изменением формы заготовки также приводят к улучшению качества.
Твердость основных металлов и сплавов
Измерение значения твердости проводится на готовых деталях, отправляющихся на сборку. Контроль производится на соответствие чертежу и технологическому процессу. На все основные материалы уже составлены таблицы значений твердости как в исходном состоянии, так и после термической обработки.
Цветные металлы
Твердость меди по Бринеллю составляет 35 НВ, значения латуни равны 42-60 НВ единиц в зависимости от ее марки. У алюминия твердость находится в диапазоне 15-20 НВ, а у дюралюминия уже 70НВ.
Черные металлы
Твердость по Роквеллу чугуна СЧ20 HRC 22, что соответствует 220 НВ. Сталь: инструментальная – 640-700 НВ, нержавеющая – 250НВ.
Для перевода из одной системы измерения в другую пользуются таблицами. Значения в них не являются истинными, потому что выведены империческим путем. Не полный объем представлен в таблице.
HB | HV | HRC | HRA | HSD |
228 | 240 | 20 | 60.7 | 36 |
260 | 275 | 24 | 62.5 | 40 |
280 | 295 | 29 | 65 | 44 |
320 | 340 | 34.5 | 67.5 | 49 |
360 | 380 | 39 | 70 | 54 |
415 | 440 | 44.5 | 73 | 61 |
450 | 480 | 47 | 74.5 | 64 |
480 | 520 | 50 | 76 | 68 |
500 | 540 | 52 | 77 | 73 |
535 | 580 | 54 | 78 | 78 |
Значения твердости, даже если они производятся одним и тем же методом, зависят от прилагаемой нагрузки. Чем меньше нагрузка, тем выше показания.