Шпонка призматическая

Характеристики шпоночной стали

Приведенная выше информация указывает на то, что сталь для шпонок должна обладать определенными эксплуатационными характеристиками. Из названия материала можно сразу определить область ее применения. Среди особенностей отметим следующее:

  1. Металлическая шпонка производится зачастую при применении металла, который отвечает ГОСТу 8787-68.
  2. Зарубежные производители учитывают стандарт DIN
  3. В большинстве случаев используется шпоночный прокат, представленный конструкционной углеродистой сталью.
  4. Особенностью можно назвать то, что поверхностный слой обладает лучшими эксплуатационными характеристиками.
  5. Повысить основные характеристики можно за счет проведения различного рода термической обработки. Часто твердость повышается путем закалки или выполнения отпуска.

Используемая марка стали хорошо поддается холодному и горячему волочению. За счет этого проводится выпуск объемной или комбинированной калибровки.

Довольно большое распространение получил шпоночный материал 8×7. Применение стандартов на момент производства заготовок позволяет существенно упростить задачу по выпуску промежуточного элемента

При выборе материала уделяется внимание нижеприведенным моментам:

  1. Твердость поверхностного слоя.
  2. Устойчивость материала от воздействия окружающей среды.
  3. Степень обрабатываемости.

Распространенные сплавы могут применяться для изготовления призматических и других вариантов исполнения промежуточных элементов, который устанавливается для передачи усилия. Стоит учитывать, что чаще всего шпоночная сталь применяется при создании прямоугольных брусков различных размеров, которые устанавливаются на валу.

Классический вариант представлен маркой Ст45. К ключевым особенностям отнесем:

Это конструкционная углеродистая сталь обыкновенного качества, стоимость которой относительно невысокая. Традиционно используется при изготовлении ответственных деталей

Не стоит обращать внимание на то, что подобная марка не подается сварке

Кроме этого, может применяться марка Ст50, свойства которой не существенно отличаются от предыдущего варианта.

В случае, когда нужно существенно повысить прочность соединения следует уделить внимание возможности применения легированных сплавов. Внесение в состав определенных химических элементов позволяет существенно повысить эксплуатационные характеристики

Примером можно назвать марку 40Х, которая характеризуется следующими особенностями:

Примером можно назвать марку 40Х, которая характеризуется следующими особенностями:

Примером можно назвать марку 40Х, которая характеризуется следующими особенностями:

  1. Твердость варьируется в пределе 35-45 HRC. Для повышения этого показателя проводится термическая обработка, а также отпуск для снижения вероятности появления внутренних напряжений.
  2. Внесение хрома позволяет несколько повысить степень защиты материала от воздействия повышенной влажности. Этот момент определяет то, что коррозия на поверхности не появляться в течение длительного периода применения изделия.
  3. Концентрация углерода в районе 0,4% обеспечивает требуемую прочность и твердость изделия. При этом в состав могут включаться и другие вещества в небольшой концентрации, за счет чего обеспечиваются требуемые эксплуатационные характеристики.

Также могут применяться и другие сплавы с особыми эксплуатационными характеристиками, к примеру, с хорошей устойчивостью к воздействию повышенной температуры. Выбор проводится в зависимости от эксплуатационных характеристик и многих других моментов.

Виды шпонок

Основные виды шпонок делят на два типа: напряженные и ненапряженные. Среди которых выделяются такие типы шпонок:

    1. Клиновые. Особый тип, который отличаются углом наклона верхней грани. В общем разделение на виды происходит исходя из классификации шпоночных соединений. Устанавливается в паз с помощью физической силы, ударным методом. Применение такого типа соединения позволяет добиться необходимого напряжения. Нарезанный клин, находясь в пазе, распирает его изнутри. За счет силы прижатия, вал и ступица совместно вращаются.Используется довольно редко, так как ее использование предусматривает индивидуальный подгон. Это можно считать недостатком для массового производства механизмов. Основное назначение — применение в тихоходных передачах и узлах неподвижного соединения. Среди клиновых шпонок выделяют:
      • врезные;
      • на лыске;
      • фрикционные;
      • без головки и с головкой.
    2. Сегментные. Производятся в виде сегментной пластины, загоняемой в паз. Производиться методом фрезерования. Широко применяются в производстве, так как просты в изготовлении, не требуют особой точности при нарезании и легко устанавливается. Отличается установкой в боле глубокий паз, в сравнении с аналогами. Глубокий паз не подходит для больших нагрузок, так как значительно снижает прочность вала, поэтому используется при небольших крутящих моментов. На длинных ступицах может устанавливаться несколько шпонок, так как они имеют фиксированную длину. Выполняют предохранительную функцию на срез и смятие.
    3. Призматические. Отличаются параллельными гранями, которые устанавливаются в паз и фиксируют ступицу. Рабочими гранями в таки случаях являются боковые. Относятся к ненапряженному типу шпоночных соединений, поэтому существует вероятность возникновения коррозии в месте соединения. Для исключения коррозии, муфта и вал соединяются с натягом. Концы производятся обычно со скругленными или плоскими концами. Для скругленного типа рабочей поверхностью считается длина прямых краев. Паз нарезается с помощью фрезы.Передача усилия происходит путем давления поверхности паза на шпонку, которая передает крутящий момент на паз ступицы. Данный тип соединения призматической шпонкой часто используется для подвижных соединений, поэтому используют дополнительное крепление с помощью винтов. Как и многие другие типы выполняет функцию предохранителя при смятии и срезе.

    4. Цилиндрические. Штифты в таких шпонках изготавливаются в виде цилиндров. Работаю в натяжении с отверстием на торце вала, которое высверливается под соответствующие размеры шпонок. Используется в тех случаях, когда ступица устанавливается на конце вала. Требует особого подхода к монтажу шпоночных соединений.Позволяют работать на срез и смятие. Поэтому выбор шпонки производят исходя из прочности на смятие.

Исходя из типа посадки выделяются:

  1. Свободная – применяется в случаях, когда выполнять сварочные работы довольно сложно и есть необходимость подвижного сцепления деталей во время работы.
  2. Плотная – нужна для создания сцеплений, движение которых во время работы выполняется в одном пространственном положении.

Шпонка. Шпоночный паз. Виды, размеры и предельные отклонения.

Призматические шпонки по ГОСТ 23360-78.

Рис 1. Основные обозначения призматических шпонок и шпоночных пазов.

Таблица 1. Размеры и предельные отклонения призматических шпонок и шпоночных пазов по ГОСТ 23360-78.

Диаметр вала dСечение шпонки bхhШпоночный пазДлина l мм
Ширина bГлубинаРадиус закругления r или фаска s1 x 45°
Свободное соединениеНоминальное соединениеПлотное соед.Вал t1Втулка t2
Вал (Н9)Втулка (D10)Вал (N9)Втулка (JS9)Вал и втулка (Р9)Ном..Ном.Пред. откл.не болеене менее
Cв.12 до 17 » 17 » 225×5 6×6+0,030+0,078 +0,0300 -0,030±0,015-0,012 -0,0423,0 3,5 +0,12,3 2,8 +0,10,25 0,250,16 0,1610-56 14-70
Св. 22 до 30 » 30 » 388×7+0,036+0,098 +0,0400 -0,036±0,018-0,015 -0,0514,0 5,0 +0,23,3 3,3 +0,20,25 0,40,16 0,2518-90
10×822-110
Св. 38 до 44 » 44 » 50

» 50 » 58

» 58 » 65

12×8+0,043+0,120 +0,0500 -0,043±0,021-0,018 -0,0615,03,30,40,2528-140
14×95,53,836-160
16×106,04,345-180
18×117,04,450-200
Св. 65 до 75 » 75 » 85

» 85 » 95

20×12+0,052+0,149 +0,0650 -0,052±0,026-0,022 -0,0747,54,90,60,456-220
22×149,05,463-250
24×149,05,470-280

Таблица 2. Предельные отклонения размеров (d + t1) и (d + t2).

Высота шпонокПредельное отклонение размеров
d + t1d + t2
От 2 до 60 -0,1+0,1 0
Св. 6 до 180 -0,2+0,2 0
Св. 18 до 500 -0,3+0,3 0

Призматические шпонки с креплением на валу по ГОСТ 8790-79.

Рис 2. Основные обозначения призматических шпонок с креплением на валу и шпоночных пазов.

Таблица 3. Размеры призматических шпонок с креплением на валу по ГОСТ 8790-79.

Ширина b (h9)Высота h (h11)Радиус закругления r или фаска s1 x 45°Диаметр d0Длина l2Длина l (h14)Винты по ГОСТ 1491-80
не менеене болееотдо
870 250,40М372590М3×8
1080,400,60825110М3×10
12М41028140М4×10
149М536160М5×12
1610М61145180М6×14
181150200
20120,600,8056220
2214М81663250М8×20
2570280
281680320
3218М101890360М10×25
36201,001,20100400
4022М1222100400М12×30
4525125450

Сегментные шпонки по ГОСТ 8786-68.

Рис 3. Основные обозначения сегментных шпонок и шпоночных пазов.

Таблица 4. Размеры и предельные отклонения сегментных шпонок и шпоночных пазов по ГОСТ 8786-68.

Диаметр вала dРазмеры шпонки b×h×DШпоночный паз
Передающих вращающий моментФиксирующих элементыШирина bГлубинаРадиус закругления r или фаска s1 x 45°
Вал t1Втулка t2
Номин.Пред. откл.Номин.Пред. откл.не менеене более
От 3 до 4 Св. 4 » 5От 3 до 4 Св. 4 » 61×1,4×4 1,5×2,6×71,0 1,51,0 2,0+0,1 00,6 0,8 +0,10,080,16
Св. 5 » 6 » 6 » 7Св. 6 » 8 » 8 » 102×2,6×7 2×3,7×102,01,8 2,91,0 1,0
Св. 7 до 8Св. 10 до 122,5×3,7×102,52,71,2
Св. 8 до 10 » 10 » 12Св. 12 до 15 » 15 » 183×5×13 3×6,5×163,03,8 5,3+0,2 01,4 1,4
Св. 12 до 14 » 14 » 16Св. 18 до 20 » 20 » 224×6,5×16 4×7,5×194,05,0 6,01,8 1,80,160,25
Св. 16 до 18 » 18 » 20Св. 22 до 25 » 25 » 285×6,5×16 5×7,5×195,04,5 5,52,3 2,3
Св. 20 до 22Св. 28 до 325×9×227,0 +0,32,3
Св. 22 до 25 » 25 » 28Св. 32 до 36 » 36 » 406×9×22 6×10×256,06,5 7,52,8 2,8
Св. 28 до 32Св. 408×11×288,08,03,3 +0,20,250,40
Св. 32 до 38Св. 4010×13×3210,010,03,3

Клиновые шпонки по ГОСТ 24068-80.

Рис 4. Основные обозначения клиновых шпонок и шпоночных пазов.

Таблица 5.1 Размеры и предельные отклонения клиновых шпонок и шпоночных пазов по ГОСТ 24068-80.

Ширина b (h9)Высота h (h11)Радиус закругления r или фаска s1 x 45°Длина l (h14)Высота шпоночной головки
не менее*не болееотдо
220,160,25620
33636
448457
550,250,4010568
66147010
87189011
1080,400,602211012
1282814012
1493616014
16104518016
18115020018
20120,600,805622020
22146325022
25147028022
28168032025
32189036028
36201,001,2010040032
402210040036
452511045040
502812550045
56321,602,0014050050
633216050050
703618050056
80402,503,0020050063
904522050070
10050250500 80

Продолжение.

Таблица 5.2 Размеры и предельные отклонения клиновых шпонок и шпоночных пазов по ГОСТ 24068-80.

Диаметр валаСечение шпонки bхhШпоночный паз
Ширина bГлубинаРадиус закругления r или фаска s1 x 45°
Вал и втулка (D10)Вал t1Втулка t2
Номин.Пред. откл.Номин.Пред. откл.не менеене более
От 6 до 82х221,2+0,1 00,5+0,1 00,080,16
Св. 8 до 103х331,80,9
Св. 10 до 124х442,51,2
Св. 12 до 175х553,01,70,160,25
Св. 17 до 226х663,52,2
Св. 22 до 308х784,0+0,2 02,4+0,2 0
Св. 30 до 3810х8105,02,40,250,40
Св. 38 до 4412х8125,02,4
Св. 44 до 5014х9145,52,9
Св. 50 до 5816х101663,4
Св. 58 до 6518х111873,4
Св. 65 до 7520х12207,53,90,400,60
Св. 75 до 8522х142294,4
Св. 85 до 9525х142594,4
Св. 95 до 11028х1628105,4
Св. 110 до 13032х1832116,4
Св. 130 до 15036х203612+0,3 07,1+0,3 00,701,00
Св. 150 до 17040х2240138,1
Св. 170 до 20045х2545159,1
Св. 200 до 23050х28501710,1
Св. 230 до 26056х32562011,11,201,60
Св. 260 до 29063х32632011,1
Св. 290 до 33070х36702213,1
Св. 330 до 38080х40802514,12,002,50
Св. 380 до 44090х45902816,1
Св. 440 до 500100х501003118,1

Применение

Основным применением шпоночных соединений является монтаж на вал с помощью пазового соединения. В большинстве своем шпоночный паз напоминает клин. Такой тип соединения деталей позволяет валу и ступице не проворачиваться относительно оси друг друга. Фиксированное положение ступицы к валу со шпонкой позволяет добиться высокого КПД при передаче усилия.

Наиболее часто шпоночное соединение можно встретить в машиностроении, при строительстве станков. Часто она используется при производстве автомобилей и других механизмов, где требуется повышенная надежность фиксации деталей машин. Высокая надежность достигается благодаря функции предохранительного узла вала со шпоночным пазом.

Шпонка выступает предохранителем в случаях превышения максимального уровня крутящего момента. В подобных случаях происходит срез шпонки, поглощая чрезмерную нагрузку она снимает ее из вала и ступицы.

Благодаря своим свойствам она стала широко распространенной в машиностроении, она отличается высокой эффективностью, простотой изготовления и монтажа, а также низкой стоимостью. Подобные характеристики особо важны в промышленном производстве, особенно в сельском хозяйстве. В разгар сезона часто возникают случаи поломок отдельных узлов, которые нужно заменить максимально быстро. Чаще всего можно встретить в узлах пресс-подборщиков.

Учитывая все вышесказанное, выделяются основные позиции, для чего нужна шпонка:

  1. Обеспечение безопасность соединяемых узлов при повышенных нагрузках.
  2. Достижение высокой степени фиксации отдельных элементов механического узла.
  3. Выполняет функцию предупреждения проворачивания узла и ступицы.
  4. Надежность подобного соединения превышает надежность аналогов при фиксации вала с деталями.

В общем, встретить шпоночное соединение можно практически в любом сложном механизме, что обусловлено его техническими характеристиками.

Достоинства и недостатки

Как и любой тип соединений, шпоночные имеют ряд достоинств и недостатков. К достоинствам шпоночных соединений можно отнести простоту большинства типов шпонки. При этом монтаж и замена такой детали выполняется легко и быстро. Благодаря чему они получили широкое применение в машиностроении. Также обеспечивает функцию предохранения.

К недостаткам относиться ослабление ступицы и вала. Оно возникает исходя из повышенного напряжения и уменьшения поперечного сечения. Также ослабление деталей вызвано из-за нарезанного паза, который снижает осевую прочность вала.

Чтобы минимизировать недостатки, нужно добиться отсутствия перекоса шпонки в пазе. Для этого нужно обеспечить отсутствие зазора, что делается путем индивидуального изготовления и подгона шпонки. Из-за этого в крупносерийном производстве редко применяют любые разновидности шпоночных соединений. Если добиться отсутствия перекоса не удалось, площадь рабочего контакта уменьшается, в следствие чего степень максимальной нагрузки уменьшается.

Также наличие зазора вызывает эффект биения, особенно на высоких скоростях. Это приведет к быстрому износу рабочих деталей. Из-за этого подобное соединение редко применяется для быстровращающихся валов. Для подбора подходящей шпонки лучше использовать таблицу шпоночных соединений.

Шпонки сегментные (ГОСТ 24071-80). Номинальные размеры, мм

Таблица 1

 dРАЗМЕРЫ ШПОНОКГЛУБИНА ПАЗАr
bhDL c или r1валавтулки
minmaxtt1minmax
От 3 до 411,443,80,050,081,00,60,05
Св. 4 до 61,52,676,80,050,082,00,80,05
 Св. 6 до 822,676,80,160,251,81,00,080,16
23,7109,70,160,252,91,00,080,16
2,53,7109,70,160,252,91,00,080,16
 Св. 8 до 1033,7109,70,160,252,51,40,080,16
35,01312,60,160,253,81,40,080,16
36,51615,70,160,255,31,40,080,16
 Св. 10 до 1245,01312,60,160,253,51,80,080,16
46,51615,70,160,255,01,80,080,16
47,51918,60,160,256,01,80,080,16
49,02221,60,160,257,51,80,080,16
 Св. 12 до 1756,51615,70,250,404,52,30,160,25
57,51918,60,250,405,52,30,160,25
59,02221,60,250,407,02,30,160,25
510,02524,50,250,408,02,30,160,25
 Св. 17 до 2269,02221,60,250,406,52,80,160,25
610,02524,50,250,407,52,80,160,25
611,02827,30,250,408,52,80,160,25
613,03231,40,250,4010,52,80,160,25

Допускается в технически обоснованных случаях применять стандартные шпонки меньших размеров сечений на валах больших диаметров (за исключением выходных концов валов).

В зависимости от принятой базы обработки и измерения на рабочих чертежах указывают размеры: d + t1 — для втулки; t (предпочтительный вариант) или d – t   — для вала.

Пример обозначения сегментной шпонки размерами b = 6 мм, h = 10 мм:

Шпонка сегм. 6 х 10 ГОСТ 24071-80

Сборка шлицевых соединений

Шлицевые соединения предназначены для передачи больших крутящих моментов и по сравнению со шпоночными соединениями имеют следующие преимущества:

  • при шлицевом соединении достигается более точное центрирование детали по валу;
  • вал почти не ослаблен, особенно при большом количестве шлицев, когда впадины можно сделать неглубокими;
  • при сборке шлицевых соединений не требуется никаких слесарно-пригоночных операций, так как после механической обработки деталей таких соединений получается полная их взаимозаменяемость.

На рис. 2; а, б, в, г показаны прямобочные, эвольвентные и треугольные профили шлицев. Наиболее распространенный профиль шлицев – прямобочный, однако теперь стали применять также шлицы с эвольвентным профилем, обеспечивающим лучшее центрирование деталей, чем с прямобочным.

Треугольные шлицы используют только при небольших нагрузках и на валах небольшого диаметра.

Шлицевые соединения, имеющие подвижные посадки, собирают вручную без пригонки. Шлицевые соединения различают по способу центрирования втулки относительно вала.

Существует три способа центрирования вала: по боковым сторонам шлицев (рис. 2, д), по наружному диаметру (рис. 2, е), по внутреннему диаметру (рис. 2, ж).

Рис. 2. Шлицевые соединения: а, б – прямобочное; в – эвольвентное; г – треугольное; д – центрированное по боковым сторонам; е – центрированное по наружному диаметру; ж – центрированное по внутреннему диаметру

Когда точность центрирования не имеет существенного значения и в то же время необходимо обеспечить достаточную прочность соединения, применяют центрирование по боковым сторонам шлицев (карданное сочленение в автомобилях).

Когда в механизмах необходимо осуществить кинематическую точность (станки, автомобили и др.), применяют центрирование по одному из диаметров. Центрирование по наружному диаметру, как более экономичное, применяют для термически необработанных охватывающих деталей, а также для таких деталей, у которых твердость после термической обработки допускает калибрование протяжкой. Если твердость охватывающей детали не позволяет производить калибрование, то применяют центрирование по внутреннему диаметру.

Неподвижные соединения, имеющие посадки с натягом, собирают в специальных приспособлениях или с подогревом детали перед напрессовкой.

Подвижные шлицевые соединения после сборки проверяют на качку, неподвижные – на биение.

Перед сборкой шлицевых соединений необходимо убедиться в наличии и хорошем состоянии внешних фасок и закруглений внутренних углов шлицев, так как при неправильном выполнении этих элементов возможно заедание шлицев при сборке соединения. В напряженных соединениях охватывающая деталь обычно напрессовывается на вал специальным приспособлением; собирать такие соединения с помощью молотка не рекомендуется.

При очень тугих шлицевых соединениях целесообразно охватывающую деталь перед напрессовкой нагреть до 80-120° С. После напрессовки охватывающая деталь должна быть проверена на осевое и радиальное биение (рис. 3).

Рис. 3. Проверка собранного шлицевого соединения на биение

В легкоразъемных и подвижных шлицевых соединениях охватывающие детали устанавливаются на место под действием небольших усилий и даже от руки. В этом случае охватывающие детали, кроме проверки на биение, контролируют на качку. В правильно собранной сборочной единице качка или относительное смещение охватывающей и охватываемой деталей под действием создаваемого вручную крутящего момента совершенно недопустимы.

Ответственные шлицевые соединения проверяются также «на краску».

Какие есть шпонки

С тем, зачем нужна шпонка, мы уже разобрались, однако очень важно будет отметить тот факт, что существуют различные варианты исполнения шпонок, каждый из которых будет иметь свои стандарты изготовления, следовательно, уникальные параметры, характеристики и предназначение для применения. Именно по этой причине мы так же рассмотрим, какие есть шпонки и какие у них эксплуатационные свойства

Обратите внимание, что шпонки одной и той же формы и конструкции могут обладать различными размерами. Основные параметры и допуски изготовления, само собой, написаны в соответствующих нормативах ГОСТ, но зачастую очень многие предприятия осуществляют изготовление шпонок на заказ по чертежам заказчика. А в некоторых случаях, заказчик может сделать шпонку из шпоночной стали самостоятельно

А в некоторых случаях, заказчик может сделать шпонку из шпоночной стали самостоятельно.

Таким образом, у потенциального клиента всегда есть возможность купить шпонку в соответствии с представленным модельным рядом или же заказать индивидуальный образец. Как правило, при изготовлении шпонки проходят процесс термообработки, позволяющий им выдерживать прочность в 600МПа, после чего им придается определенная конструкционная форма, подразделяющая их по виду соединения на:

  • призматические
  • сегментные
  • цилиндрические
  • тангенциальные.
  • клиновые.

Призматические шпонки, в свою очередь, так же подразделяют на 3 дополнительных вида исходя из их принципа действия: на закладные, на направляющие и на скользящие. Так как установка данного типа шпонок достаточно проблематична в плане их индивидуального подгона в пазы, а при полном износе они могут опрокидываться, то в большом производстве этот вид продукции используется достаточно редко.

В отличии от предыдущего варианта конструкции, сегментные шпонки не требуют в момент установки никакой подгонки, и не имеют свойства опрокидываться, что сказывается на их достаточно частом использовании. Однако применение такого типа шпонок ограничено на деталях с большим сечением вала, поэтому сегментную разновидность невозможно будет встретить на участках со множеством изгибов вала.

Цилиндрические шпонки по принципу работы схожи с призматическими. Они тоже редкий гость в крупномасштабном производстве из-за того, что они требуют одинаковой степени плотности и твердости соединяемых изделий. Во многом именно эта особенность и мешает их частому применению. Собственно, основным местом установки цилиндрических шпонок являются именно концевые участки вала.

Тангенциальная шпонка представляет собой конструкцию из двух элементов, которые напоминают призматический клин с сечением прямоугольного поперечного типа. Такой вид шпонок монтируется попарно под наклоном от 120° до 180°. Одним из главных достоинств у такого типа изделия является то, что их материал осуществляет работу на сжатие. Основной их сферой применения является тяжелое машиностроение.

Наконец, разбирая то, какие есть шпонки, мы подошли к последней разновидности, а именно к клиновым шпонкам. Такой тип по праву считается наиболее эффективным и очень распространенным ввиду множества своих неоспоримых преимуществ. Например, изделия клинового вида могут выдерживать незначительную осевую нагрузку, и при этом отлично функционировать при нагрузках переменного типа.

Алгоритм расчета

Расчет шпонки по исходным данным можно сделать с помощью компьютерных программ. Наиболее простые, и удобные в пользовании: MS Excel и OOo Calc. Программа включает в себя расчетные формулы, содержит все нормализованные размеры на валы, ступицы и шпонки.

Для выполнения алгоритма расчета используем пример с реальными цифрами. Их следует заносить в строгой последовательности в раздел с синими надписями значений. Проставлять цифры следует в свободную колонку между условными обозначениями из формул и единицами измерения. Например:

  1. Крутящий момент на валу – 300 Н/м.
  2. Диаметр вала – 45 мм.
  3. Глубина паза на валу – 5,5 мм.
  4. Высота шпонки – 9 мм. Выбирается по справочной таблице, которая имеется в программе.
  5. Ширина шпонки – 14 мм.
  6. Длину шпонки – 63 мм.
  7. Вариант исполнения – 1. С прямыми углами, или закругленными торцами с одной или двух сторон. Выбираем с полукруглыми торцами. По классификации они обозначаются 1.
  8. Величина допускаемого при смятии напряжения – 90 Мпа.
  9. Напряжение среза – 54 Мпа. Значение берется как 60% от величины смятия.

Результаты расчетов программа выдает в той же таблице, только ниже, это действующие величины напряжений смятия и среза, нагруженность соединения по этим напряжениям.

В таблице приведены результаты расчета на компьютерной программе MS Excel.

Название показателяФормула расчетаПолученное значение
Напряжение смятия действующееδсм=2*T/(d*(h-t1)*Lp)77,7 МПа
Напряжение действующее срезаδсм=2*T/(d*(h-t1)*Lp)19,4 Мпа
Нагруженность по напряжению смятияsсм=δсм/см>86,40%
Нагруженность по срезуSср=TСР/ср>36,00%

Расчет на смятие и срез производится приблизительный, поскольку не учитывается целый ряд факторов, влияющих на фактический размер нагрузки:

  • неравномерное соединение по всей плоскости;
  • наличие фасок на детали, уменьшающих площадь;
  • не прилегание на скругленных торцах втулки на зубчатом колесе.

На практике обычно делают расчет на смятие, поскольку эта сила воздействия значительно превышает давление на срез. При разрушении в результате перегрузок, происходит деформация поверхности соприкосновения деталей, потом шпонка срезается. При расчете механизмов, результат умножается на коэффициент прочности. Для каждого вида машин он разный.

Программы подходят и для расчета круглых шпонок. Площадь воздействия и сечение берутся по аналогии с призматическими, рассчитываются через радиус.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий