Пайка нихрома
Пайка нихрома с нихромом, нихрома с медью и ее сплавами, нихрома со сталью может быть осуществлена припоем ПОС-61, ПОС-50, хуже ПОС-40, с применением флюса следующего состава (граммы): вазелин — 100, хлористый цинк в порошке — 7, глицерин — 5. Флюс приготовляют в фарфоровой ступке, в которую кладут вазелин, а затем добавляют, хорошо перемешивая до получения однородной массы, последовательно хлористый цинк и глицерин. Соединяемые поверхности тщательно зачищают шлифовальной шкуркой и протирают ватой, смоченной в 10%-ном спиртовом растворе хлористой меди, флюсуют, лудят и только после этого паяют. Значительно лучшие результаты, чем пайка, дает сварка, в особенности, если приходится соединять между собой концы тонкой проволоки. Преимущество сварки состоит в том, что для ее выполнения никаких припоев не требуется. Контакт при этом получается очень надежный, так как температура нагрева свариваемых металлов значительно выше, чем, например, у оловянно-свинцо-вьгх припоев. Поэтому при эксплуатации даже от сильного нагрева сваренного контакта соединение проводов не нарушается. Для соединения проводов из нихрома, константана, манганина и т. п. их следует зачистить, скрутить и пропустить через них ток такой силы, чтобы место сварки накалилось докрасна. На это место пинцетом кладется кусочек ляписа (азотнокислого серебра), который при нагревании расплавляется, в результате чего в месте соединения возникает прочный контакт.
Если диаметр свариваемой проволоки не превышает 0,15…0,2 мм, то ее концы накладывают друг на друга (расстояние 15…20 мм) и на них наматывают тонкую медную проволоку диаметром 0,1…0,15 мм. Затем соединенные таким образом проволочки вносят в пламя горелки. Медь при этом начинает плавиться и прочно соединяет оба высокоомных провода. Оставшиеся концы медной проволоки обрезают, а место сварки изолируют, если нужно. Этот способ применим для соединения медных проводов с проводами из сплавов высокого сопротивления. Перегоревший провод электронагревательного прибора (нихром, никелин, константан) можно соединить следующим способом: концы провода в месте обрыва вытянуть на длину 15…20 мм и зачистить до блеска шкуркой. Затем из листовой стали или алюминия вырезать небольшую пластинку и из нее сделать муфту, надеваемую на провода в месте их соединения. Провода должны быть предварительно скреплены обычной скруткой. В заключение муфту плотно сжимают плоскогубцами.
2.1. Общие сведения о проводниках
В качестве проводников электрического тока могут быть использованы как твердые тела, так и жидкости, а при соответствующих условиях (в состоянии ионизации) и газы.
Из металлических проводниковых материалов могут быть выделены металлы высокой проводимости, имеющие удельное сопротивление при нормальной температуре не более 0.05 мкОм·м, и сплавы высокого сопротивления с удельным сопротивлением не менее 0.3 мкОм·м.
Особый интерес представляют обладающие чрезвычайно малым удельным сопротивлением при весьма низких температурах материалы сверхпроводники и криопроводники.
К жидким проводникам относятся расплавленные металлы и электролиты. Для большинства металлов температура плавления высока, только ртуть, имеющая температуру плавления минус 39°С, может быть использована в качестве жидкого металлического проводника при нормальной температуре. Другие металлы являются жидкими проводниками только при повышенных температурах.
Механизм прохождения тока в металлах – как в твердом, так и в жидком состоянии – обусловлен движением свободных электронов под воздействием электрического поля; поэтому металлы называют проводниками с электронной электропроводностью или проводниками первого рода. Проводниками второго рода, или электролитами, являются растворы, в частности, водные, кислот, щелочей и солей. Прохождение тока через эти вещества связано с переносом вместе с электрическими зарядами ионов в соответствии с законами Фарадея, вследствие чего состав электролита постепенно изменяется, а на электродах выделяются продукты электролиза. Ионные кристаллы в расплавленном состоянии также являются проводниками второго рода. Пример – соляные закалочные ванны с электронагревом.
Все газы и пары, в том числе и пары металлов, при низких напряженностях электрического поля не являются проводниками. Однако, если напряженность поля превзойдет некоторое критическое значение, обеспечивающее начало ударной и фотоионизации, то газ может стать проводником с электронной и ионной проводимостью. Сильно ионизированный газ при равенстве числа электронов числу положительно заряженных ионов в единице объема представляет собой особую проводящую среду, называемую плазмой.
Область применения константана
Из константана производят термоэлектроды, термоэлектрические преобразователи, компенсационные провода, а также нормальные эталоны сопротивления, которые применяются в электротехнике.111 Наиболее востребованным металлопрокатом из константана является проволока и лента марки МНМц 40-1,5 и полоса. В зависимости от типа и определяется основное назначение сплава.
Изготовление константановой проволоки для электротехнических целей проводится в соответствии с ГОСТ 5307-77, её диаметр находится в приделах от 0,02 до 5 мм. Данный металлопрокат, предназначенный для производства термоэлектродов термоэлектрических преобразователей, выпускается по ГОСТ 1790-77. Сплав такого типа применяется в изготовлении термопар, где он работает в паре:
- хромель-константан (рабочий диапазон от -40 до 900°C);
- железо-константан (рабочий диапазон представлен минусовыми температурами до -190 °C);
- медь-константан (рабочий диапазон от -250 до 300°C).
Константановая проволока, предназначенная для использования в качестве удлиняющих проводов к термоэлектрическим преобразователям, производится в соответствии с ГОСТ 1791-67, её диаметр представлен рядом стандартных значений от 0,2 до 2,5 мм.
Константановая лента производится с учетом требований, наведенных в ГОСТ 5189-75. Её толщина может варьироваться от 0,1 до 2 мм. Ширина константановой ленты представлена рядом стандартных значений от 10 до 100 мм (шаг 10 мм), также, она может составлять 110, 125, 140, 150, 160, 170 и т.д. до 300 мм. Металлопрокат данного типа применяется в качестве элементов с высоким омическим сопротивлением, которые могут работать и при этом не терять своих эксплуатационных свойств, нагреваясь до 500 °C.
Тепловое расширение
Все тела при нагревании расширяются, и металлы не исключение. Для любого материала есть характеристика, такая как “коэффициент теплового расширения тел”, который показывает, во сколько раз увеличится размер тела, при нагреве на 1°С. (В различных диапазонах температур значение теплового коэффициента расширения может различаться, кроме того для некоторых анизотропных материалов коэффициент может различаться в разных плоскостях. Для упрощения не будем учитывать эту разницу, воспользовавшись усредненными значениями) Вот небольшая табличка:
Материал | Тепловой коэффициент расширения α при 20°С, 1/К |
Алюминий | 23, 1 * 10−6 |
Медь | 17 * 10−6 |
Сталь | 10, 8 * 10−6 |
Стекло | 8, 5 * 10−6 |
Стекло термостойкое (боросиликатное) | 3, 3 * 10−6 |
Стекло кварцевое | 0, 59 * 10−6 |
Инвар (сплав) | 1, 2 * 10−6 |
Платина | 9 * 10−6 |
Из этой таблички видно, что соединение из двух материалов при нагревании будет расширяться по разному, провоцируя внутренние напряжения и деформации. Иногда это полезное свойство — оно используется в биметаллических пластинках в терморегуляторах, такие пластинки при нагреве изгибаются и разрывают контакт. Но в деле создания надежного электрического соединения такая разница в величине теплового расширения может ослабить контакт. Если соединение не обладает упругими свойствами, то спустя нескольких циклов нагрева и охлаждения, можно обнаружить что вместо плотного тугого контакта проводник болтается.
Если соединения разных материалов не избежать, то нужно помнить, что такое соединение потенциально может ослабнуть при изменениях температуры, и должно быть обслуживаемым и контролируемым. Замуровать соединение медного и алюминиевого проводника в стенке под слоем штукатурки — плохая идея.
Сфера применения
В зависимости от применения мировой рынок сплавов нихрома можно разделить на архитектурные, автомобильные, электронные, аэрокосмические и другие. Нихромовые сплавы используются для изготовления монеля из железа и стали, для производства нержавеющей стали. Сплавы нихрома используются в архитектурных целях, таких как свинец для водопроводных труб, кровли и окон.
Нихром используется в передачах, карданных валах, специальных транспортных средствах для работы в зоне с низкими температурами или интенсивного износа. Он также используется в специальных инженерных целях. Сплавы нихкрома в основном используются для нагрева электрическим сопротивлением. Они обладают высокой электрической стойкостью, хорошей прочностью и пластичностью при рабочих температурах.
Нихром широко используется в индустрии фейерверков и взрывчатых веществ и для подготовки проводов для систем электрического зажигания, таких как зажигалки, электрические спички и электронные сигареты.
Это вещество используется в керамических работах. Он служит для обеспечения внутренней структуры поддержки и помогает удерживать формы глиняных скульптур мягкими. Из-за его устойчивости к высоким температурам он используется, когда куски глины обжигают в печах. Нихромные проволоки используются для проверки цвета пламени в неосвещенных частях катионного огня от катионов натрия, меди, калия и кальция.
Нихром также используется в микробиологических лабораториях и для создания термопар.
Расчет спирали из нихрома и фехраля
Существует несколько способов расчета греющих спиралей, рассмотрим для начала более простой метод, учитывающий только сопротивление материала, а потом включим в расчет еще и изменение сопротивления под воздействием темепературы.
Способ расчета спирали по сопротивлению материала
В данном способе все довольно просто. Нам нужны первоначальные данные, на основе которых мы будем проводить вычисления. Они включают в себя:
Мощность нагревательного элемента, который хотите получить
Напряжение, при котором спираль будет работать
Диаметр и тип проволоки, который имеется в наличии
Предположим, у нас имеется электроприбор, который должен работать с мощностью 12 Вт под напряжением 24 В. При этом мы используем проволоку из нихрома с сечением 0,2 мм.
Для вычислений нам потребуется самая элементарная формула из общеобразовательного курса физики:
Мощность (Р) = Напряжение (U) * Сила тока (I)
І = Р: U = 12 : 24 = 0,5 А
Теперь воспользуемся законом Ома для определения сопротивления:
Сопротивление (R ) = Напряжение (U) * Сила тока (I) = 24/0,5 = 48 Ом
Теперь нам нужна формула для определения длины проводника:
Длина (L) = Площадь сечения (S) * Сопротивление (R) / Плотность материала (ρ)
Как же узнать сопротивление нихромовой проволоки? Помочь в решении данной задачи нам помогут таблицы плотности материалов или формулы для вычисления значения. Итак, если у нас проволока имеет диаметр 0,2, значит площадь сечения по формуле будет 0,0314 мм2, сопротивление смотрим по таблице и получаем длину проволоки 1,3 м.
Но это все чисто теоретически, ведь мы не знаем, сможет ли выдержать проволока данного диаметра такой ток. Посмотрим таблицу, в ней указаны максимальные значения тока для проволоки определенного диаметра. В нашем случае это 0,65, значит наше значение 0,5 лежит в допустимых пределах.
Также не забывайте учесть среду, в которой будет работать нагреватель. Если вы греете жидкость, можно смело увеличивать силу тока вдвое, а если замкнутое пространство – наоборот, уменьшать.
Сплавы высокого сопротивления
Сплавы с высоким электрическим сопротивлением делятся на три группы:
- Сплавы для магазинов сопротивлений, различных эталонов, добавочных сопротивлений, шунтов;
- Сплавы для сопротивлений и реостатов;
- Сплавы для электронагревательных приборов и печей.
К сплавам первой группы предъявляют следующие требования: высокое удельное сопротивление, близкий к нулю температурный коэффициент сопротивления, малая термоэлектродвижущая сила в сочетании с другими металлами (особенно с медью), постоянство сопротивления во времени, высокая стойкость против коррозии. К сплавам этой группы относятся сплавы на основе меди – манганин и константан.
Манганин
Сплав коричнево-красноватого цвета, состоящий из 86 % меди, 12 % марганца и 2 % никеля. Манганин имеет удельное сопротивление 0,42 – 0,43 Ом × мм² / м, плотность 8,4 кг/дм³, прочность на разрыв 40 – 55 кг/мм², очень малые температурный коэффициент сопротивления и термо-ЭДС (электродвижущую силу), допустимую рабочую температуру не выше 60 °С. Манганин является лучшим материалом для изготовления магазинов сопротивлений, образцовых сопротивлений и шунтов.
Константан
Сплав 60 % меди и 40 % никеля. Константан имеет удельное сопротивление 0,5 Ом × мм² / м, плотность 8,9 кг/дм³, прочность на разрыв 40 – 50 кг/мм².
Константан применяется для изготовления реостатов и электронагревательных сопротивлений, если их рабочая температура не превышает 400 – 450 °С.
Константан в сочетании с медью имеет высокую термо-ЭДС и поэтому не может быть применен для изготовления эталонных сопротивлений к точным приборам, так как эта дополнительная ЭДС будет искажать показания приборов. Это свойство константана используется при изготовлении термопар для измерения температур порядка несколько сотен градусов.
Сплав для реостатов или для сопротивлений должен быть дешевым, иметь большое удельное сопротивление и малый температурный коэффициент сопротивления. Для этих целей применяют сплавы на медной основе, например константан, никелин и другие.
Для удешевления материала никель в реостатных сплавах заменен цинком и железом. Сплавы, применяемые для электронагревательных приборов и печей, должны хорошо обрабатываться, быть механически прочными, дешевыми, иметь высокое удельное сопротивление и длительное время работать при высокой температуре без окисления.
При нагреве металла на его поверхности образуется оксидная пленка, которая должна предотвратить дальнейшее разрушение металла. Металлы – медь, железо и кобальт – имеют пористую оксидную пленку, поэтому при нагревании они быстро разрушаются. Такие металлы, как никель, хром и алюминий, покрываются при нагреве плотной оксидной пленкой, поэтому жароупорные сплавы делают на основе этих металлов.
Нихром
Сплав никеля и хрома. К нихромам относится также ферронихром, который, кроме никеля и хрома, содержит железо (58 – 62 % никеля, 15 – 17 % хрома, остальное – железо). Плотность нихрома 8,4 кг/дм³, прочность на разрыв 70 кг/мм², удельное сопротивление около 1,0 Ом × мм² / м. Нихром выпускается в виде проволоки и ленты, которые идут на изготовление спиралей электронагревательных приборов и печей, имеющих рабочую температуру до 1000 °С.
Фехраль
Сплав 12 – 15 % хрома, 3 – 5 % алюминия, остальное железо. Фехраль имеет плотность 7,5 кг/дм³, прочность на разрыв 70 кг/мм² и удельное сопротивление около 1,2 Ом × мм² / м. Рабочая температура фехраля около 800 °С.
Хромаль
Сплав 28 – 30 % алюминия, остальное железо. Прочность хромаля на разрыв 80 кг/мм², удельное сопротивление 1,3 – 1,4 Ом × мм² / м, допустимая рабочая температура 1250 °С.
Технология производства
Для получения сверхпроводника на медный провод в вакууме по всему периметру наносят токопроводящий слой, состоящий из сплава никеля и меди, с диффузией в поверхностный слой проволоки-основы. Снаружи наносится защитный слой металла. После чего полученный провод проходит отжиг в вакууме в течение 30 – 180 мин при 850-950 o С. Для создания медно-никелевого провода применяется чистые (99,99) медь и никель.
Эффект повышенной проводимости образуется в состоящем из двух металлов слое сплава, который представляет собой тонкостенную токопроводящую трубку-прослойку. Благодаря диффузионному взаимодействию слоев металла, примыкающих к трубке прослойке с обеих сторон, поверхность получается почти идеальной.
Нанесение слоев провода происходит в вакуумном оборудовании для исключения окисления проводящего слоя. Следовательно длина зависит от возможностей вакуумного оборудования.
Никелевые сплавы
В сплавах никель (вместе с кобальтом) соединяется с алюминием, кремнием, марганцем, железом и хромом. Согласно ГОСТ 492-73, в них допускается не более 1,4 % примесей. В составе примесей содержится незначительная доля магния, свинца, серы, углерода, висмута, мышьяка, сурьмы, кадмия, олова. Отдельной группой выступают медно-никелевые сплавы.
Все сплавы никеля разделяются на четыре большие группы:
- Конструкционные. Особенность этих сплавов — высокие механические свойства и повышенная устойчивость к коррозии. К этой группе относятся прежде всего сплавы на медно-никелевой основе, такие как мельхиор, монель, нейзильбер. Они хорошо свариваются и поддаются обработке в холодном и горячем виде.
- Жаростойкие. Основными элементами этих сплавов являются никель и железо. Они отличаются высокой жаростойкостью и жаропрочностью, применяются преимущественно для производства электронагревательных приборов. Их также используют для изготовления малогабаритных тензорезисторов и потенциометрических обмоток.
- Термоэлектродные. Это сплавы с высоким удельным сопротивлением и большой электродвижущей силой. Их используют для производства компенсационных проводов, термопар, прецизионных приборов. К данной группе относятся некоторые никелевые (хромель, алюмель) и медно-никелевые (константан, копель, манганин) сплавы.
- Сплавы с особыми свойствами. В эту группу входят сплавы, которые находят особое применение благодаря своим уникальным свойствам. Инвар — сплав никеля и железа, который отличается повышенной упругостью. Он применяется для изготовления эталонов длины, мерных геодезических проволок, несущих конструкций лазеров, деталей часовых механизмов и др. Пермаллой — также сплав никеля и железа, обладающий высокой проницаемостью в магнитных полях. Его используют для производства магнитопроводов, деталей реле, сердечников трансформаторов и др.
Сплав с кремнием
Кремнистый никель НК 0,2 содержит 99,4 % никеля (с кобальтом), 0,15 – 0,25 % кремния и до 0,45 % примесей. Из этого сплава изготавливаются ленты и полосы, которые находят применения в электротехнике: из них делают детали приборов и устройств.
Сплавы никеля и марганца
Марганцевый никель выпускается четырех марок — НМц1, НМц2, НМц2,5 и НМц5. Из сплава НМц1 производят сетки управления ртутных выпрямителей. НМц2 находит применение в электронных лампах повышенной прочности, используется для держателей сеток и др. Проволока из сплавов НМц2,5 и НМц5 используется в свечах двигателей — автомобильных, авиационных и тракторных. НМц5 также применяется для радиоламп.
Алюмель
Алюмель (НМцАК 2-2-1) — сплав никеля, алюминия, марганца и кремния. Он содержит 1,60−2,40 % алюминия, 1,80−2,70 % марганца, 0,85−1,50 кремния, до 0,7 % примесей, остальная часть — никель с кобальтом (кобальта — до 1,2 %). Алюмель применяется для изготовления термопар, которые используются для измерения температуры в различных областях промышленности, системах автоматики, а также в медицине и научных исследованиях.
Хромели
Хромель Т (НХ 9,5) — сплав никеля и 9-10 % хрома с содержанием примесей в количестве не более 1,4 %. Из этого сплава изготавливают проволоку для термопар.
Хромель К (НХ 9) содержит 8,5−10 % хрома и до 1,4 % примесей. Проволока из данного сплава используется для компенсационных проводов.
В состав хромеля ТМ (НХМ 9,5) входит 9−10 % хрома, 0,1−0,6 % кремния и до 0,15 % примесей. Сплав используется для изготовления термопар.
Хромель КМ (НХМ 9) — это сплав никеля, 8,5−10 % хрома, 0,1−0,6 % кремния с содержанием не более 0,15 % примесей. Применяется для изготовления проволоки компенсационных проводов.
Свойства меди
Востребованность меди в электротехнике обусловлена следующими положительными качествами:
- высокая электропроводимость;
- пластичность. Из меди делают тончайшие жилы и пластины с толщиной, исчисляемой микронами. Благодаря пластичности, она не обламывается при монтаже, выдерживая множество циклов сгибания-разгибания без развития усталостных явлений;
- распространенность и простота добычи. Это преимущество условно. Получение меди обходится дешевле серебра — единственного металла, превосходящего ее в электропроводимости. Но в сравнении с алюминием, а тем более со сталью, медь стоит гораздо дороже. Потому ее нередко заменяют этими материалами;
- антикоррозионные свойства;
- прочность. Благодаря ей, изделия из меди устойчивы к деформациям.
- материал легко поддается пайке и сварке.
Источником меди служит сульфидная руда. Для применения в электротехнике металл после плавки руды подвергают электролитической очистке, так что доля примесей в нем составляет 0,05-0,1% (высококачественная рафинированная медь марок М0 и М1, также называемая электролитической).
В процессе получения минимизируют воздействие кислорода на металл, иначе механические характеристики последнего ухудшаются.
Сульфидная руда
Дешевле меди стоят сплавы на ее основе — латунь (с цинком) и бронза (с оловом или свинцом). Помимо олова или свинца, в бронзу могут добавлять бериллий (бериллиевая бронза), кадмий, кремний, фосфор, магний, хром.
Сплавы превосходят чистую медь в прочности, но уступают ей в проводимости.
Применение
Сфера применения рассматриваемого материала определяется его параметрами. Так, большая термоэлектродвижущая сила обуславливает возможность использования константана в качестве исходного материала для, термопар. Значительное электрическое сопротивление позволяет создавать из него элементы сопротивления, представленные реостатами, и нагревательные элементы. Так как электрическое сопротивление константана слабо связано с температурой, он подходит для тех случаев, когда необходима стабильность электрического сопротивления. Помимо этого, рассматриваемый сплав применяется в измерительном оборудовании низкого класса точности и в качестве материала удлиняющих проводов.
Изделия из константана представлены проволокой диаметром 0,2-2,5 мм и лентами толщиной 0,1-2 мм и шириной 10-300 мм. Причем проволока представлена в двух вариантах: мягкой (отожженной) и твердой. Их свойства отличаются. Так, для мягкого варианта удельное сопротивление составляет 0,46-0,48 ом×мм2/м, прочность на разрыв – 45-65 кг/мм2, в то время как для твердой проволоки удельное сопротивление равно 0,48-0,52 ом×мм2/м, прочность на разрыв -65-70 кг/мм2. Кроме того, выпускают продукцию как без изоляции, так и с различными ее вариантами: высокопрочной эмалевой, двухполосной шелковой, двухслойной комбинированной эмаль-шелковой и эмаль-лавсановой.
Константановая проволока служит для изготовления проводников между приемником и контактором высокоточных температурных измерителей. Также из нее делают компенсационные провода термопар. Из проволоки и лент создают резистивные, ленточные и проволочные нагревательные элементы промышленных печей по выплавке металлов с небольшой температурой плавления. Наконец, из константана производят реостаты, резисторы, тензометрические датчики.
Во-первых, высокое электрическое сопротивление, способствует быстрому и сильному нагреву. Во-вторых, малый температурный коэффициент сопротивления позволяет значительно упростить конструкцию нагревателя. Так, он избавляет от необходимости понижения напряжения при запуске, следовательно, не требуется трансформатор. В-третьих, хорошие технологические особенности позволяют создавать детали сложной конфигурации.
Таким образом, благодаря названным свойствам константана в совокупности возможно изготовление из него коротких нагревательных элементов большой площади поперечного сечения. Это считают существенным преимуществом по следующим причинам. Во-первых, печи многих типов, например, лабораторные, рассчитаны на короткие нагревательные элементы. Во-вторых, детали большого диаметра характеризуются большим сроком службы.
Константан применяют как для открытых, так и для закрытых нагревателей. В первом случае его используют в виде ленты и толстой проволоки. Это объясняется сгоранием тонкой проволоки на открытом воздухе при высоких температурах (более 400-450 °C). Однако материал в такой форме актуален для печей с инертным газом, вакуумных печей, закрытых нагревателей. В последнем случае в устройствах типа ТЭН, ориентированных на нагрев жидкости, воздуха, полов и т. д., константан не контактирует с окружающей средой. В большинстве таких нагревателей он в виде спирали из нити помещен в герметичную трубку. Для высокомощных моделей применяют толстую проволоку и ленту.
Также относительно формы константана следует отметить, что проволоку считают более предпочтительной по техническим и экономическим особенностям для нагревательного оборудования в сравнении с лентой. Так, для крупных промышленных печей применяют материал диаметром 3-7 мм, для меньших аналогов – 0,03-2,5 мм проволоку. К преимуществам проволоки перед лентой относят меньшую стоимость и простоту изготовления нагревательных элементов. Так, спиральные детали создают путем станковой навивки. К тому же проволочную спираль, благодаря компактности и высокой пластичности, можно разместить в оборудовании различными способами: на сводах и стенках зигзагами и лабиринтом, подвесить на керамических изоляторах, навить на трубчатое основание. Второй способ применяют на низкотемпературных печах, а третий считают наиболее эффективным. Вследствие больших трудоемкости и затратности создания нагревательных элементов из ленты обычно ее применяют в основном в специфических случаях. В любом случае константановые нагревательные элементы близки по параметрам эффективности, независимо от формы.
Обобщение понятия удельного сопротивления
Кусок резистивного материала с электрическими контактами на обоих концах
Удельное сопротивление можно определить также для неоднородного материала, свойства которого меняются от точки к точке. В этом случае оно является не константой, а скалярной функцией координат — коэффициентом, связывающим напряжённость электрического поля E→(r→){\displaystyle {\vec {E}}({\vec {r}})} и плотность тока J→(r→){\displaystyle {\vec {J}}({\vec {r}})} в данной точке r→{\displaystyle {\vec {r}}}. Указанная связь выражается :
- E→(r→)=ρ(r→)J→(r→).{\displaystyle {\vec {E}}({\vec {r}})=\rho ({\vec {r}}){\vec {J}}({\vec {r}}).}
Эта формула справедлива для неоднородного, но изотропного вещества. Вещество может быть и анизотропно (большинство кристаллов, намагниченная плазма и т. д.), то есть его свойства могут зависеть от направления. В этом случае удельное сопротивление является зависящим от координат тензором второго ранга, содержащим девять компонент ρij{\displaystyle \rho _{ij}}. В анизотропном веществе векторы плотности тока и напряжённости электрического поля в каждой данной точке вещества не сонаправлены; связь между ними выражается соотношением
- Ei(r→)=∑j=13ρij(r→)Jj(r→).{\displaystyle E_{i}({\vec {r}})=\sum _{j=1}^{3}\rho _{ij}({\vec {r}})J_{j}({\vec {r}}).}
В анизотропном, но однородном веществе тензор ρij{\displaystyle \rho _{ij}} от координат не зависит.
Тензор ρij{\displaystyle \rho _{ij}}симметричен, то есть для любых i{\displaystyle i} и j{\displaystyle j} выполняется ρij=ρji{\displaystyle \rho _{ij}=\rho _{ji}}.
Как и для всякого симметричного тензора, для ρij{\displaystyle \rho _{ij}} можно выбрать ортогональную систему декартовых координат, в которых матрица ρij{\displaystyle \rho _{ij}} становится диагональной, то есть приобретает вид, при котором из девяти компонент ρij{\displaystyle \rho _{ij}} отличными от нуля являются лишь три: ρ11{\displaystyle \rho _{11}}, ρ22{\displaystyle \rho _{22}} и ρ33{\displaystyle \rho _{33}}. В этом случае, обозначив ρii{\displaystyle \rho _{ii}} как ρi{\displaystyle \rho _{i}}, вместо предыдущей формулы получаем более простую
- Ei=ρiJi.{\displaystyle E_{i}=\rho _{i}J_{i}.}
Величины ρi{\displaystyle \rho _{i}} называют главными значениями тензора удельного сопротивления.