Установки плазменной резки

Художественные произведения – в цене

Сделав небольшую и скромную поделку с помощью ЧПУ станка, многие умельцы затем готовы начать сотрудничество с магазинами по торговле сувенирами и продукцией, которая относится к предметам художественного промысла. А это – солидный и стабильный заработок, если налажены рынки сбыта.

У многих мастеров возникает потребность правильно оценить изделие. Как вы думаете, сколько можно получить за панно (резьба) из деревянной заготовки – результат искусного фрезерования, размером 20x370x548 мм? В пределах 10 тыс. рублей. И это в среднем ценовом диапазоне. А на изделии 60х110, с качеством намного ниже (виден фрезерный след) заработаем всего 200-220 руб.

Надёжным бизнесом может стать для творческой личности идея изготавливать на фрезерных станках статуэтки, панно с плоскими или объемными изображениями (фанера, пластик, металл и даже стекло).

Любители выжигать воспользуются пиропринтером или будут работать на гравировальных устройствах, создают уникальные изображения в соответствии с выбранным фото, изготавливая сувениры на заказ. Длительность технологического процесса – 6 и больше часов.

Обычно материал составляет в пределах 10% от цены изделия, учитывают также затраты на электроэнергию, плёночные и лаковые покрытия, амортизация фрезера и время обработки.

Например, хорошего качества икону из бука режут около 10 часов, после станка дорабатывают 4-5 дней. И тот, кто изготавливает продукцию такого рода, знает ей цену.

Портальные станки

Портальные станки плазменной резки — очень большие установки, имеющие поверхность в виде стола, на который укладываются металлические листы. Выпускаются они в разных модификациях, но основой является портальная механическая конструкция. Она имеет такие преимущества:

  • высокая скорость работы;
  • повышенная точность установки позиции самого резака;
  • самое высокое качество обработки (на одном уровне с лазером);
  • максимальная автоматизация;
  • большой выбор устройств, удобных в применении.

Портальные станки плазменной резки обладают реечным приводом, благодаря которому возможно безлюфтовое перемещение. В целом, они не только обеспечивают максимальную автоматизацию, но и просты в обращении, то есть не требуют специально подготовленного оператора.

Портальные машины плазменной резки имеют разные особенности, которые зависят от типа перемещения портала. В установке они отражаются на способах управления: есть моноприводы и двухприводные системы, а также серво- и шаговые двигатели. Ещё есть отличия по количеству координат для перемещения резака — к примеру, возможен косой рез, в процессе которого получается фаска. Портал плазменной резки может иметь очень разные размеры, равно как и количество резаков может существенно отличаться.

Портальная машина плазменной резки в действии представлена на следующем видео:

Применение

Используется портальная плазменная резка в основном для раскроя чёрной стали и нержавейки, а также алюминия (обычно толщина листов до 80 мм). Она позволяет осуществить особенно качественный раскрой при наибольшей производительности. Но она занимает довольно большую площадь и требует мощного источника электроэнергии для своей работы.

Если вы задумываетесь над выбором технологии, то оцените количество и масштаб операций, которые предполагается производить, а также материал заготовок и желаемые результаты по качеству реза. По всем этим параметрам портальная плазменная резка имеет преимущества так, как она обеспечивает выдающиеся рабочие характеристики и лучшее качество. В результате, портальная установка плазменной резки быстро окупает свою стоимость.

Возможности плазменной резки

Сфера применения плазменной резки очень разнообразна, благодаря своей универсальности и диапазону обрабатываемых металлов и металлических сплавов. Автоматизированная и материалов широко применяется на предприятиях и во многих отраслях промышленности для выполнения обработки:

  • Труб;
  • Листового металла;
  • Чугуна;
  • Стали (в т.ч. нержавеющей);
  • Бетона;
  • Отверстий;
  • Фигурной и художественной резки.

Характеристики плазморезов позволяют выполнять обработку нержавеющей стали, что недоступно кислородным горелкам. Плазморезы практически незаменимы для обработки тонкой листовой стали. Особого внимания заслуживают ручные устройства, которые отличаются компактными размерами и экономичным потреблением электроэнергии. Технология плазменно-дуговой резки особенно ценится за выполнение чистого среза без «наплывов», что положительно влияет на скорость и точность выполнения работ, а также на производственные возможности предприятий.

Мне нравитсяНе нравится

Плазмотрон или резак

Основными компонентами плазморезки являются: два электрода, изолятор, разделяющий катодный и анодный узлы, и камера завихрения газовой смеси.

  • Один из электродов является основным и изготавливается из тугоплавкого металла типа тория, циркония или бериллия. Но все эти металлы, точнее, продукты их взаимодействия с высокими температурами, являются крайне вредными для здоровья. Поэтому оптимальным вариантом будет изготовление электрода из другого тугоплавкого метала — гафния, который абсолютно безвреден.
  • Вторым электродом является сопло. Оно, как правило, изготавливается из меди. В сопле имеется очень тонкое отверстие, через которое раскалённый газ вырывается наружу. Периодически этот элемент требует своей замены в силу того, что постоянно находится в зоне запредельно высоких температур. Поэтому оптимальным является иметь не одно сопло, чтобы в случае необходимости можно было быстро заменить вышедшее из строя.
  • Газ под давлением подаётся в камеру завихрения через прямой патрубок, расположенный сверху или сбоку от камеры. Предварительно нагнетается необходимое давление с помощью компрессора.

Принцип работы плазмотрона

Под давлением газ поступает в пространство между соплом и электродом. В момент включения осциллятора, в результате возникновения высокочастотного импульсного тока, между двумя электродами возникает электрическая дуга. Эта дуга носит название предварительной, и её задача — разогреть газ, находящийся в камере сгорания. Температура разогретого газа в камере относительно невысокая — порядка 5000−7000 градусов.

После того как предварительная дуга заполнит собой всё сопло, с помощью компрессора увеличивают давление подаваемого сжатого воздуха, в результате начинает происходить ионизация газа. Как следствие этого, газ расширяется в объёме, становится сверхпроводимым и разогревается до запредельно высоких температур порядка 20000−30000 градусов. Иными словами, газ превращается с плазму.

Под большим давлением плазма вырывается через узкое отверстие сопла наружу. В момент соприкосновения потока плазмы с поверхностью металла возникает вторая дуга — основная, или классическая. Роль второго электрода в этом случае берёт на себя сама плазма. Плазменная дуга мгновенно расплавляет металл в точке контакта. Под сильным напором сжатого воздуха расплавленный металл мгновенно выдувается, и в результате остаётся чистый рез.

Существуют два базовых условия, при соблюдении которых получается качественная резка с помощью плазмы:

  • Ток, подаваемый на электрод, должен обладать силой не менее 250 А.
  • Сжатый воздух подаётся в камеру сгорания со скоростью не менее 800−900 м/с.

Сложность изготовления плазмотрона

Схемы, чертежи для изготовления плазмореза своими руками очень легко найти в Интернете. Но плазменный резак очень сложно устроен и, кроме того, требует очень тонких настроек перед непосредственной эксплуатацией. Несмотря на обилие в Интернете соответствующих рекомендаций, чертежей и видеороликов, сделать плазмотрон дома технически крайне сложно. А если учесть, что затея эта ещё и крайне опасная для здоровья, то лучше от неё совсем отказаться и воспользоваться услугами «Али Экспресса» или ближайшего специализированного магазина.

Резка металла плазменным резаком или плазморезом

О возможностях плазмотрона хорошо рассказано в видео. Просмотрев ролик вы обязательно захотите иметь в хозяйстве такое чудесное оборудование, даже несмотря на его большую цену.

https://www.youtube.com/watch?v=rg4PvBBr1CU

Резка металла происходит под действием энергии плазмы. Получается это следующим образом. Когда нажимают кнопку розжига, подается ток от источника и внутри плазмотрона образуется дежурная сварочная дуга. Через нее проходит сжатый воздух, ионизируется, и плазмой вырывается через сопло с высокой скоростью. Плазма имеет температуру свыше 10 тыс. градусов и скорость в два раза больше скорости звука. Этой энергии достаточно, чтобы металл расплавился и даже испарился.

Оператор подносит плазморез к месту, где необходимо выполнить разрез и металл начинает плавиться. Скорость ручного перемещения должна обеспечивать разрез металла. Параметрами резки есть сила тока и давление воздуха.
Подробности о том, как получается плазма и устроен резак хорошо показано в видео.

При неправильно подобранных параметрах на кромке может образоваться окалина. После окончания резки сразу не отключают подачу сжатого воздуха. Он подается некоторое время для охлаждения металла.

Технология работы с плазморезом

Перед началом работ зачищают кромки, удаляют с них загрязнения и ржавчину.
Работы по плазменной резке любого металла начинают с установки силы тока. Принцип прост: сила тока рассчитывается в зависимости от толщины металла. Величину силы тока, которая необходима для разрезания 1 мм толщины металла, умножают на толщину металла, который необходимо разрезать. Если необходимо разрезать 25 мм стали, то необходимо 25 умножить на 4А (ток, необходимый для реза 1 мм стали или чугуна). Итого на оборудовании выставляют 100А.

 Скорость с которой необходимо выполнять резку непосредственно влияет на качество работы, но зависит от умения резчика. Специалисты советуют на начальной стадии выполнения работ ориентироваться на наличие искр с обратной стороны изделия. Если они отсутствуют, то металл прорезается не полностью.

Перед тем как разжечь дугу в течение полуминуты резак продувают газом, чтобы удалить грязь и возможный конденсат. Далее оператор нажимает кнопку розжига дежурной дуги, она горит 2 сек. Если режущая дуга не образовалась, процесс повторяют еще раз.

В зависимости от модели поджиг бывает контактный и бесконтактный:

  1. При контактном необходимо короткое замыкание. Как только плазма вышла из сопла между металлом и электродом образуется плазменная дуга и начинается процесс резки.
  2. При бесконтактном дуга зажигается между соплом и электродом. Когда сопло приближают к металлу, образуется рабочая дуга.

Во время резки необходимо поддерживать постоянную длину дуги. Если она не обеспечивается специальным упором, то этот параметр выдерживает резчик, он должен быть от 1,6 до 3 мм.
При работе необходимо сопло держать к металлу под углом 900С. Для того чтобы уменьшить деформации на тонком металле, горелку держат под небольшим углом

Во время резки обращают внимание, чтобы металл не засорял сопло горелки

Подробно о работе плазматрона смотрите в видео.

С помощью рассмотренных способов резки можно порезать металл по самому сложному контуру. Эти работы по силам выполнить своими руками, после небольшой теоретической и практической подготовки. Главное — это наличие оборудования и соответствующих материалов.

Рекомендуем вам еще:

5 Принцип работы аппаратов для ручной плазменной резки

После того, как установка ручной плазменной резки собрана (произведены все подключения и соединения ее элементов), металлическую заготовку подсоединяют к аппарату (инвертору или трансформатору) предусмотренным для этого кабелем. Оборудование подключают к электросети, плазмотрон подносят к обрабатываемому материалу на расстояние до 40 мм и производят зажигание дежурной (инициирующей ионизацию) электрической дуги. Затем открывают подачу газа.

После получения плазменной струи, которая обладает высокой электропроводимостью, в момент ее соприкосновения с металлом образуется рабочая (режущая) электрическая дуга. Одновременно автоматически отключается дежурная. Рабочая дуга поддерживает непрерывность процесса ионизации подаваемого газа, образования плазменного потока. Если она по какой-то причине погаснет, то требуется прекратить подачу газа, заново включить плазменный аппарат и зажечь дежурную дугу, а после этого пустить газ.

Устройство плазмореза

Само название уже информирует о том, что резка металлов производится с помощью плазмы. А плазма – это ионизированный газ, который обладает высокой проводимостью электрического тока. И чем выше температура этого газа, тем выше проводимость, а значит, сила резки увеличивается.

Для процессов резки металлов используют воздушно-плазменную дугу. При этом электрический ток имеет непосредственное воздействие на металлические поверхности. То есть, принцип работы плазмореза такой:

  • Плавление металла.
  • Выдувание его жидкого состояния из зоны среза.

Состоит плазменный резак из:

  • источника питания – это может быть сварочный трансформатор или инвертор;
  • самого резака, который иногда называют плазмотроном;
  • компрессора;
  • шлангов.

Важно понять конструктивные особенности самого резака. Внутри него вставлен электрод, изготовленный из редких металлов, таких как бериллий, гафний, цирконий и так далее

Почему именно они? Потому что в процессе нагревания на поверхности такого электрода образуются тугоплавкие оксиды. Они своеобразная защита самого электрода, которая обеспечивает целостность материала, то есть, не разрушается. Но чаще всего в плазменных резаках устанавливаются электроды из гафния, потому что он не токсичен, как торий, и нерадиоактивен, как бериллий.

Немаловажное значение в конструкции резака играет и сопло, через который подается плазма на резку. Именно от него и зависят основные характеристики оборудования

А точнее сказать, от его диаметра и длины. От диаметра зависит мощность плазменного потока, а соответственно и быстрота среза и ширины срезанной канавки. Конечно, от этого зависит и скорость охлаждения заготовки. Чаще всего на резаках плазменной резки устанавливается сопло диаметром 3 мм. Длина сопла влияет на качество среза. Чем оно длиннее, тем качество выше. Хотя очень длинное сопло быстро выходит из строя.

А если сделать плазменный станок самому

На станке с ЧПУ для плазменной резки металла можно сделать много полезных вещей. В нем заинтересованы небольшие мастерские по изготовлению металлических дверей. Но стоит это оборудование (особенно импортные варианты) – недёшево, поэтому некоторые домашние мастера стремятся его собрать самому из частей труб квадратных сечений.

Важно знать, что агрегат, несложный по конструкции, сделать без знаний и умений невозможно. Особенно сложно собрать сам плазмотрон

Но составляющие части аппарата и ЧПУ для управления станком реально приобрести отдельно в специализированных онлайн-магазинах.

Хотя возможны варианты электромагнитной и фотоэлектронной систем управления, но именно плазменные станки с ЧПУ способны обеспечить наиболее точную и быструю работу. Домашнему умельцу, заинтересованному в оборудовании, предстоит также собрать систему подачи газа, добиться высокой точности позиционирования, чтобы в полной мере пользоваться возможностями этого аппарата, предусмотренными его техническими характеристиками.

Выбор конструктивных элементов

Изготовление плазмореза своими руками из инвертора требует наличия таких элементов:

  1. Источник питания для оборудования, в этом качестве и выступает инвертор, обеспечивающий подачу тока с необходимыми характеристиками на плазморез. Вместо инвертора, если его нет в наличии или невозможно найти, можно использовать трансформатор.
  2. Если вместо инвертора выбирается трансформатор, необходимо учесть его большой вес и слишком высокое потребление электроэнергии.
  3. Плазмотрон, т. е. плазменный резак, который является основным элементом конструкции.
  4. Воздушный компрессор и кабель-шланговый пакет.

Виды плазменных резаков.

Что выбрать в качестве источника тока для сборки плазмореза? Трансформатор – не самый лучший вариант по целому ряду причин. Дело не только в его большом весе, что затрудняет использование оборудования после сборки, но и в слишком большом потреблении электроэнергии. Устройство получается слишком затратным. Из преимуществ следует отметить слабую чувствительность к перепадам напряжения в сети во время работы. Таким оборудованием можно резать различные заготовки, толщина которых значительная.

Инвертор в качестве источника питания является более предпочтительным, он экономнее, его стоимость ниже. Кроме того, вес инвертора гораздо меньше, устройство после сборки в использовании проще. Но толщина заготовок не может быть слишком большой. Такие плазменные резаки можно использовать в домашних мастерских, на небольшом производстве, так как мощности вполне хватает для такого «скромного» производства. Есть и еще одно преимущество в пользу первого. Это уровень КПД, который у инверторного резака примерно на 30% выше, дуга отличается более стабильными показателями, резка получается качественнее. Удобнее такое оборудование и для работы в труднодоступных местах, где трансформаторные использовать не получается. Плазмотрон – главный элемент резака, его конструкция включает в себя сопло, канал подачи воздуха (сжатого для обеспечения резки), электрод, изолятор/охладитель.

Резка дугой

При обучении основам сварки новичок больше всего боится прожечь металл и полностью разрушить соединение. При резке металла цель сварщика именно прожечь, разрезать металл.

Для того чтобы разрезать металл сварочной дугой необходимо нагреть его до температуры плавления и удалить расплавленный металл из зоны сварки. Удаление выполняется под собственным весом расплавленного металла, за счет давления со стороны дуги или поток воздуха, подаваемый в зону сварки.

Для резки металла применяют такие электроды:

  • покрытый металлический,
  • угольный,
  • трубчатый,
  • вольфрамовый.

Этим способом режут сталь, в том числе и легированную, цветные металлы и сплавы.
К недостаткам относится низкое качество реза, неровные края, наличие окалины. Поэтому, если металл в дальнейшем идет для создания конструкций, кромки необходимо дополнительно обработать, например, зачистить.

Резку выполняют на том же оборудовании, что и сварку, во всех пространственных положениях. В качестве оборудования в домашних условиях ранее использовался трансформатор или выпрямитель, теперь чаще всего применяют инвертор.

Основы дуговой резки

Для того чтобы разрезать металл дугой устанавливают силу тока на 30-40% выше, чем при сварке. Зажигают мощную дугу на верхней кромке металла и углубляются вниз, при этом разрезают кромку.

Резка метала сварочным инвертором

Для резки выбирают электрод небольшого диаметра, а вот ток, наоборот, выставляют больше чем необходимо для сварки. Например, на диаметр электрода 2,5 мм, устанавливают 140А.
Зажигайте дугу и оставляйте электрод на одном месте. Стараетесь, чтобы дуга углублялась, как бы прожигала металл.
Если пластину разместить вертикально, расплавленный металл будет аккуратно стекать. При горизонтальной резке металла сварочным инвертором подтеки будут собираться внизу пластины.
Чтобы обеспечить лучший прогрев металла, при резке вбирают прямой полярности. В этом случае металл прогревается глубоко, но рез получается узким.

 На видео показано, какие возможности открываются при применении резки дугой. Пластина в 10 — 20 мм толщиной разрезана буквально за несколько минут с легкостью и красиво.

Устройство и принцип работы

Чтобы разобраться в том, как работает плазменный станок с ЧПУ, нужно узнать его конструкций. К основным элементам относятся:

  1. Станина — устойчивое основание для закрепления остальных деталей оборудования.
  2. Рабочий стол с механизмами для изменения его положения.
  3. Направляющие для передвижения рабочей части станка.
  4. Шаговые двигатели с помощью которых перемещается плазмотрон.
  5. Портал, на котором закрепляется плазмотрон.
  6. Датчики, с помощью которых происходит считывание основной информации о рабочем процессе.
  7. Панель управления для задания алгоритмов.

Нельзя забывать про крепежные элементы, провода, выключатели, подсветку рабочей зоны. Компактные модели не имеют рабочего стола. Они закрепляются на верстаках с помощью специальных креплений.

Принцип работы плазмотрона простой:

  1. На резак под давлением поступает поток воздуха.
  2. После соприкосновения с электродом, он нагревается до высокой температуры (максимум до 30000 градусов).

Воздух становится ионизированным, у него повышается показатель электропроводности. Под воздействием раскаленного потока металл расплавляется в зоне нагревания. Мастер убирает разрезанные метали после того, как программа остановила рабочую часть оборудования.

Аппарат плазменной сварки: какие бывают

Принято делить аппараты на разновидности по их мощности. За меру берут сварочный ток в плазменной дуге. Но не только ток отличает аппараты в данном случае. Есть и отличия в конструкции аппаратов и горелок.

Микроплазменные

Промышленный источник микроплазменной сварки SBI PMI 50 TL Basic

Микроплазменными называют аппараты, работающие при токе от 100 миллиампер до 25 А. Они подходят, начиная от нижнего предела, для сварочных работ по ювелирным изделиям и вплоть до резки листового металла толщиной 10 мм.

Это простые аппараты, работающие на постоянном токе, диаметр их сопла имеет величину от 1.3 до 2.5-3 мм.

Рабочий газ получают из воды и спиртовых или ацетоновых смесей.

Катод изготавливают из меди с легированием гафнием.

На среднем токе

Аппараты среднего тока работают в пределах 50-150 ампер. Преимущественно, они используются для резки металла. Рабочим газом служит обычный воздух, как самый дешевый, и оптимальный при том, вариант. Однако, эти же аппараты могут применяться и с другими рабочими и защитными газами. Источники питания для них более совершенны, конструкции горелок сложнее, с вольфрамовым легированным катодом, иногда имеют подвод охлаждающей воды для анода и часто – высоковольтный импульсный запуск и режим малого тока для дежурной дуги.

На большом токе

Сильноточные аппараты создают дугу с током от 150 А и, вообще говоря, малоактуальны для индивидуального потребителя. Их используют в судостроительной промышленности, в ядерном машиностроении и в приборостроении для ядерной физики. Очень часто эти аппараты являются лишь частью роботизированных комплексов. Их горелки используют вольфрамовые катоды, легированные бериллием, торием, или лантаноидами, для максимального понижения работы выхода электронов.

Плазморезы с ЧПУ

Среди оборудования для реза плазмой автоматизированные станки, работающие на программном обеспечении – востребованная технология во многих промышленных сферах. С их помощью изготавливаются элементы металлоконструкций для строительства, узлы и механизмы для машиностроения, комплектующие для сельскохозяйственной техники, дверные группы, стеллажи.

Как работает плазморез на программном обеспечении?

Модельный ряд плазменных ЧПУ-станков может отличаться типом, схемой, подачей, обрабатываемого материала. Но все они имеют общие элементы.

  • Система, подающая газ в плазмотрон;
  • Раскроечный стол укомплектован поворачиваемой поверхностью.
  • Система креплений на магнитах и устройство, передвигающее режущий инструмент.
  • Контролирующий датчик высоты горелки над заготовкой.
  • Рельса из профиля с зубчатыми рейками.
  • Система числового программного управления.

Принцип функционирования оборудования прост, состоит в следующем алгоритме:

Воздушный поток поступает на резак с давлением. Он соприкасается с электродом получает температуру до 3000. Ионизированный воздух становится электропроводным. Металлопрокат плавится от контакта, а отрезанный под давлением кусок отбрасывается.

Для работы станка составляется программа, вводятся параметры. Станок без оператора или с его минимальным участием выполняет необходимые действия.

Рез плазмой на чпу-станках имеет ряд эксплуатационных преимуществ:

  • все операции по резу металлических листов при условии сложности конфигурации проводятся точно по заданным параметрам и имеют абсолютную точность;
  • низкое потребление электричества;
  • работа станка не требует производственных издержек, что позволяет повысить рентабельность производства;
  • высокая производительность;
  • ЧПУ-станки могут выполнять работы по раскрою листов разного металлопроката, сталей низколегированных и углеродистых, чугуна 0,5 – 150 мм делая срез качественным и чистым при отсутствии дополнительных операций по зачистке торцов;
  • безопасность работы станка – отсутствие выхода газа, огня;
  • опция по определению толщины обрабатываемого металлического листа;
  • простота в эксплуатации и обслуживании.

Минусов у плазмозеров с ЧПУ нет. Единственный недостаток – не возможность проводить раскрой высоколегированных металлических листов, толщина которых больше 100 мм и титана.

Особенности резки плазмой на станках с ЧПУ

Применяя станки-чпу, необходимо учитывать технические характеристики оборудования, химический состав смесей, размеры изделий, нюансы обработки.

При маленькой толщине металлопроката (до 10мм) хватит температуры, которую имеет маломощная дуга плазмы. При большей толщине заготовки, производят раскрой, дополнительно выполнив стабилизацию дуги. Если толщина материала превышает 10 сантиметров нужно оборудование, которое будет формировать дугу с высоким воздействием.

Также имеет значение вид источника. Тонколистовая сталь (6мм) обрабатывается малым током. При обработке листов, толщина которых более 1,2 см, применяются источники с высоким током. При слабом же источнике, срез будет зашлакованным.

Не менее важен выбор химсостава для обработки заготовок. Это смеси, в которых есть аргон, водород и азот. Так для медных сплавов чаще используется водород, для латуни и алюминия применяют азот с водородом.

Также нужно учитывать, что для получения качественного реза необходимо применять кислород.

Стол станка должен быть оборудован системой дымоудаления и металлических отходов.

Рез контролирует ЧПУ-блок, а программное обеспечение следит за укладываемыми металлическими листами на рабочий стол, выдавая оптимальный режим. Также программное обеспечение делает расчет времени, количества элементов, выполняет отчет.

Востребованы следующие типы плазморезов:

  • со стационарным размещением. Это аппараты консольного, шарнирного, портального типа, режущие металл плазмой;
  • переносные (мобильные) модели, выполняющие такую же функцию – рез металла плазмой, которые оснащены системой числового программного управления.
Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий