Измерение тензодатчика | Деформация сдвига от тензодатчика
Измерение тензодатчика используется для определения сопротивления проволоки, соединенной фольгой, с проводящей подложкой. Сопротивление провода R,
\ frac {\ Delta R} {R} = К. \ varepsilon
где K признан деформационным фактором
В качестве альтернативы,
\ varepsilon = деформация = деформация
Таким образом, деформация может быть вызвана измерением деформации.
Поскольку деформации низкие, мост Уитстона должен определять сопротивления. Показание гальванометра должно быть нулевым, чтобы определить сопротивления R1, R2, R3, R4. Для измерения деформации можно использовать более одной конфигурации. Можно использовать половину проводки и прикрепить ее к другим датчикам. Есть один активный счетчик и один фиктивный счетчик. Манекен снижает температурные эффекты, нейтрализуя их. Такая разница может привести к повышению точности схем.
Деформация изгиба
Рассмотрим примеры деформации данного вида. В случае изгиба, выпуклая часть тела подвергается некоторому растяжению, а вогнутый фрагмент сжимается. Внутри тела, подвергающегося данному варианту деформации, есть слой, который не испытывает ни сжатия, ни растяжения. Его принято называть нейтральным участком деформируемого тела. Вблизи него можно уменьшить площадь тела.
В технике примеры деформации данного типа используют для экономии материалов, а также для уменьшения веса возводимых конструкций. Сплошные брусья и стержни заменяют трубами, рельсами, двутавровыми балками.
Деформация кручения
Основные понятия о кручении. Кручение круглого бруса.
Кручением называют такой вид деформации, при котором в любом поперечном сечении бруса возникает только крутящий момент, т. е. силовой фактор, вызывающий круговое перемещение сечения относительно оси, перпендикулярной этому сечению, либо препятствующий такому перемещению. Другими словами – деформации кручения возникают, если к прямому брусу в плоскостях, перпендикулярных его оси приложить пару или пары сил.
Моменты этих пар сил называют скручивающими или вращающими. Вращающий момент обозначают Т.
Такое определение условно разделяет силовые факторы деформации кручения на внешние (скручивающие, вращающие моменты Т) и внутренние (крутящие моменты Мкр).
В машинах и механизмах кручению наиболее часто подвергаются круглые или трубчатые валы, поэтому расчеты на прочность и жесткость чаще всего производят для таких узлов и деталей.
Рассмотрим кручение круглого цилиндрического вала.
Представьте резиновый цилиндрический вал у которого жестко закреплен один из концов, а на поверхности нанесена сетка из продольных линий и поперечных окружностей. К свободному концу вала приложим пару сил, перпендикулярно оси этого вала, т. е. закрутим его вдоль оси. Если внимательно рассмотреть линии сетки на поверхности вала, то можно заметить, что:
– ось вала, которую называют осью кручения, останется прямолинейной;
– диаметры окружностей останутся такими же, а расстояние между соседними окружностями не изменится;
– продольные линии на валу обратятся в винтовые линии.
Из этого можно заключить, что при кручении круглого цилиндрического бруса (вала) справедлива гипотеза плоских сечений, а также предположить, что радиусы окружностей остаются при деформации прямыми (поскольку их диаметры не изменились). А поскольку в сечениях вала отсутствуют продольные силы, то расстояние между ними сохраняется.
Следовательно, деформация кручения круглого вала заключается в повороте поперечных сечений относительно друг друга вокруг оси кручения, причем углы поворота их прямо пропорциональны расстояниям от закрепленного сечения – чем дальше от закрепленного конца вала находится какое-либо сечение, тем на больший угол относительно оси вала оно закручивается.
Для каждого сечения вала угол поворота равен углу закручивания части вала, заключенного между этим сечением и заделкой (закрепленным концом).
рис. 1φφ1 l1lφ = φ1 / l1 = φ / l = const
Если мы рассмотрим тонкий слой на поверхности вышеупомянутого резинового цилиндрического бруса (рис. 1), ограниченный ячейкой сетки cdef, то заметим, что эта ячейка при деформации перекашивается, и ее сторона, удаленная от закрепленного сечения, смещается в сторону закручивания бруса, занимая положение c1d1ef.
Следует отметить, что аналогичная картина наблюдается при деформации сдвига, только в этом случае поверхность деформируется из-за поступательного перемещения сечений друг относительно друга, а не из-за вращательного перемещения, как при деформации кручения. На основании этого можно сделать вывод, что при кручении в поперечных сечениях возникают только касательные внутренние силы (напряжения), образующие крутящий момент.
Итак, крутящий момент есть результирующий момент относительно оси бруса внутренних касательных сил, действующих в поперечном сечении.
***
Материалы раздела “Деформация кручения”:
- Понятие о кручении цилиндрического бруса (вала)
- Построение эпюр крутящих моментов
- Деформации и напряжения, возникающие при кручении
- Расчеты на прочность и жесткость при кручении
- Расчет цилиндрических винтовых пружин
Учебные дисциплины
- Инженерная графика
- МДК.01.01. «Устройство автомобилей»
- Карта раздела
- Общее устройство автомобиля
- Автомобильный двигатель
- Трансмиссия автомобиля
- Рулевое управление
- Тормозная система
- Подвеска
- Колеса
- Кузов
- Электрооборудование автомобиля
- Основы теории автомобиля
- Основы технической диагностики
- Основы гидравлики и теплотехники
- Метрология и стандартизация
- Сельскохозяйственные машины
- Основы агрономии
- Перевозка опасных грузов
- Материаловедение
- Менеджмент
- Техническая механика
- Советы дипломнику
Олимпиады и тесты
- «Инженерная графика»
- «Техническая механика»
- «Двигатель и его системы»
- «Шасси автомобиля»
- «Электрооборудование автомобиля»
Деформации на примере организма человека
Тело человека подвергается серьезным механическим нагрузкам от собственных усилий и веса, появляющихся по мере физической деятельности. Вообще, деформация (сдвиг) характерна для человеческого организма:
- Сжатие испытывает позвоночник, покровы ступней, нижние конечности.
- Растяжению подвергаются связки, верхние конечности, мышцы, сухожилья.
- Изгиб характерен для конечностей, костей таза, позвонков.
- Кручениям подвергается во время поворота шея, при вращении ее испытывают кисти рук.
Но при превышении показателей предельного напряжения, возможен разрыв, например костей плеча, бедра. В связках же ткани соединяются настолько эластично, что допускается растягивание их в два раза. Кстати, деформация сдвига объясняет всю опасность передвижения женщин на высоких каблуках. Вес тела будет переноситься на пальцы, что приведет к повышению нагрузки на кости в два раза.
По результатам медицинских осмотров, проводимых в школах, из десяти детей лишь одного можно считать здоровым. Как деформации связаны с детским здоровьем? Сдвиг, кручение, сжатие – основные причины нарушения осанки у детей и подростков.
Закон Гука
Основной закон, рассматриваемый при деформации тела. Согласно ему, деформация, возникающая в теле, прямо пропорциональна воздействующей силе. Единственная оговорка заключается в том, что он применим только при малых значениях деформации, поскольку при больших значениях и превышении предела пропорциональности эта связь становится нелинейной. В простейшем случае (для тонкого растяжимого бруска) закон Гука имеет следующий вид:
Ф=к*Л,
где Ф — это приложенная сила; к — коэффициент упругости; Л — это изменение длины бруса.
Если с двумя величинами всё понятно, то коэффициент (к) зависит от нескольких факторов, таких как материал изделия и его размеры. Его значение также можно вычислить по следующей формуле:
к=(Е*С)/Л,
где Е — это модуль Юнга; С — площадь поперечного сечения; Л — длина бруса.
Классификация
В общем случае можно выделить следующие виды деформации: упругие и неупругие. Упругие, или обратимые, деформации исчезают после того, как пропадает воздействующая на них сила. Основа этого физического закона используется в силовых тренажёрах, например, в эспандере. Если говорить о физической составляющей, то в основе лежит обратимое смещение атомов — они не выходят за пределы взаимодействия и рамки межатомных связей.
Неупругие (необратимые) деформации, как вы понимаете, являются противоположным процессом. Любая сила, которую приложили к телу, оставляет следы/деформацию. К этому типу воздействия относится и деформация металлов. При таком типе изменения формы зачастую могут меняться и другие свойства материала. Например, при деформации, вызванной охлаждением, может увеличиться прочность изделия.
Механические свойства материалов
Основными механическими свойствами материалов при их деформации являются прочность, пластичность, хрупкость, упругость и твердость.
Прочность — способность материала сопротивляться воздействию внешних сил, не разрушаясь и без появления остаточных деформаций.
Пластичность – свойство материала выдерживать без разрушения большие остаточные деформации. Неисчезающие после снятия внешних нагрузок деформации называются пластическими.
Хрупкость – свойство материала разрушаться при очень малых остаточных деформациях (например, чугун, бетон, стекло).
Идеальная упругость – свойство материала (тела) полностью восстанавливать свою форму и размеры после устранения причин, вызвавших деформацию.
Твердость – свойство материала сопротивляться проникновению в него других тел.
Рассмотрим диаграмму растяжения стержня из малоуглеродистой стали. Пусть круглый стержень длинной l0 и начальным постоянным поперечным сечением площади A0 статически растягивается с обоих торцов силой F.
Диаграмма сжатия стержня имеет вид (рис. 10, а)
где Δl = l — l0 абсолютное удлинение стержня; ε = Δl / l0 — относительное продольное удлинение стержня; σ = F / A0 — нормальное напряжение; E — модуль Юнга; σп — предел пропорциональности; σуп — предел упругости; σт — предел текучести; σв — предел прочности (временное сопротивление); εост — остаточная деформация после снятия внешних нагрузок. Для материалов, не имеющих ярко выраженную площадку текучести, вводят условный предел текучести σ0,2 — напряжение, при котором достигается 0,2% остаточной деформации. При достижении предела прочности в центре стержня возникает локальное утончение его диаметра («шейка»). Дальнейшее абсолютное удлинение стержня идет в зоне шейки ( зона местной текучести). При достижении напряжением предела текучести σт глянцевая поверхность стержня становится немного матовой – на его поверхности появляются микротрещины (линии Людерса-Чернова), направленные под углом 45° к оси стержня.
Смещение
Рис. 1. Движение сплошного тела.
Изменение конфигурации сплошного тела приводит к смещению . Смещение тела состоит из двух компонентов: смещения твердого тела и деформации. Смещение твердого тела состоит из одновременного перемещения и вращения тела без изменения его формы или размера. Деформация подразумевает изменение формы и / или размера тела от исходной или недеформированной конфигурации κ ( B ) до текущей или деформированной конфигурации κ t ( B ) (Рисунок 1).
Если после смещения континуума происходит относительное смещение между частицами, произошла деформация. С другой стороны, если после смещения континуума относительное смещение между частицами в текущей конфигурации равно нулю, то деформации нет, и говорят, что произошло смещение твердого тела.
Вектор, соединяющий положения частицы P в недеформированной конфигурации и деформированной конфигурации, называется вектором смещения u ( X , t ) = u i e i в лагранжевом описании, или U ( x , t ) = U J E J в эйлерово описание.
Поле смещения представляет собой векторное поле всех векторов смещения для всех частиц в теле, которое связывает деформированную конфигурацию с недеформированной конфигурацией. Анализ деформации или движения сплошного тела удобно проводить в терминах поля смещения. В общем, поле смещения выражается через материальные координаты как
- ты(Икс,т)знак равноб(Икс,т)+Икс(Икс,т)-Иксилитыязнак равноαяJбJ+Икся-αяJИксJ{\ displaystyle \ \ mathbf {u} (\ mathbf {X}, t) = \ mathbf {b} (\ mathbf {X}, t) + \ mathbf {x} (\ mathbf {X}, t) – \ mathbf {X} \ qquad {\ text {или}} \ qquad u_ {i} = \ alpha _ {iJ} b_ {J} + x_ {i} – \ alpha _ {iJ} X_ {J}}
или в терминах пространственных координат как
- U(Икс,т)знак равноб(Икс,т)+Икс-Икс(Икс,т)илиUJзнак равнобJ+αJяИкся-ИксJ{\ displaystyle \ \ mathbf {U} (\ mathbf {x}, t) = \ mathbf {b} (\ mathbf {x}, t) + \ mathbf {x} – \ mathbf {X} (\ mathbf {x }, t) \ qquad {\ text {или}} \ qquad U_ {J} = b_ {J} + \ alpha _ {Ji} x_ {i} -X_ {J} \,}
где α Ji – направляющие косинусы между материальной и пространственной системами координат с единичными векторами E J и e i , соответственно. Таким образом
- EJ⋅еязнак равноαJязнак равноαяJ{\ displaystyle \ \ mathbf {E} _ {J} \ cdot \ mathbf {e} _ {i} = \ alpha _ {Ji} = \ alpha _ {iJ}}
и отношение между u i и U J определяется выражением
- тыязнак равноαяJUJилиUJзнак равноαJятыя{\ displaystyle \ u_ {i} = \ alpha _ {iJ} U_ {J} \ qquad {\ text {или}} \ qquad U_ {J} = \ alpha _ {Ji} u_ {i}}
Знаю это
- еязнак равноαяJEJ{\ Displaystyle \ \ mathbf {е} _ {я} = \ альфа _ {iJ} \ mathbf {E} _ {J}}
тогда
- ты(Икс,т)знак равнотыяеязнак равнотыя(αяJEJ)знак равноUJEJзнак равноU(Икс,т){\ displaystyle \ mathbf {u} (\ mathbf {X}, t) = u_ {i} \ mathbf {e} _ {i} = u_ {i} (\ alpha _ {iJ} \ mathbf {E} _ { J}) = U_ {J} \ mathbf {E} _ {J} = \ mathbf {U} (\ mathbf {x}, t)}
Обычно системы координат для недеформированной и деформированной конфигураций накладываются друг на друга, что приводит к b = 0 , а направляющие косинусы становятся дельтами Кронекера :
- EJ⋅еязнак равноδJязнак равноδяJ{\ displaystyle \ \ mathbf {E} _ {J} \ cdot \ mathbf {e} _ {i} = \ delta _ {Ji} = \ delta _ {iJ}}
Таким образом, мы имеем
- ты(Икс,т)знак равноИкс(Икс,т)-Иксилитыязнак равноИкся-δяJИксJзнак равноИкся-Икся{\ displaystyle \ \ mathbf {u} (\ mathbf {X}, t) = \ mathbf {x} (\ mathbf {X}, t) – \ mathbf {X} \ qquad {\ text {или}} \ qquad u_ {i} = x_ {i} – \ delta _ {iJ} X_ {J} = x_ {i} -X_ {i}}
или в терминах пространственных координат как
- U(Икс,т)знак равноИкс-Икс(Икс,т)илиUJзнак равноδJяИкся-ИксJзнак равноИксJ-ИксJ{\ Displaystyle \ \ mathbf {U} (\ mathbf {x}, t) = \ mathbf {x} – \ mathbf {X} (\ mathbf {x}, t) \ qquad {\ text {или}} \ qquad U_ {J} = \ delta _ {Ji} x_ {i} -X_ {J} = x_ {J} -X_ {J}}
Тензор градиента смещения
Частичное дифференцирование вектора смещения по координатам материала дает тензор градиента смещения материала ∇ X u . Таким образом, мы имеем:
Как измеряется угол сдвига фаз осциллографом
Осциллографический способ можно отнести к самому простейшему с погрешностью в районе 5 о . Определение сдвига осуществляется при помощи осциллограмм. Существует четыре осциллографических метода:
- Применение линейной развертки.
- Метод эллипса.
- Метод круговой развертки.
- Использование яркостных меток.
Определение угла сдвига фаз зависит от характера нагрузки. При определении фазного сдвига в первичной и вторичной цепях трансформатора, углы могут считаться равными и практически не отличаются друг от друга.
Угол сдвига фаз напряжений, измеряемый по эталонному источнику частоты и при использовании измерительного органа лает возможность обеспечить точность всех последующих измерений. Фазные напряжения и угол сдвига фаз зависят от нагрузки, так симметричная нагрузка обуславливает равенство фазного напряжения , токов нагрузки и угол фазного сдвига, также будет равна нагрузка по потребляемой мощности на всех фазах электроустановки.
Угол сдвига фаз между током и напряжением в несимметричных трехфазных цепях не равны друг другу. Для того чтобы вычислить угол сдвига фаз (угол φ) в цепь включают последовательно присоединенные сопротивления (резисторы), индуктивности и конденсаторы (емкости).
Рис. №1. Последовательное соединение сопротивления, индуктивности и емкости для вычисления угла сдвига фаз. В этом контуре протекает переменный ток, который способствует возникновению ЭДС.
Рис. №2. Схема проведения опыта по определению сдвига фаз между током и напряжением. Слева показаны схемы подключения конденсаторов, катушек индуктивности и резисторов, справа показаны результаты опыта.
Как вывод, можно сказать, что:
- Составляющие элементы комплексного сопротивления, такие как резистор и емкость, а также проводимость не будут взаимообратными величинами.
- Отсутствие одного из элементов делает резистивные и реактивные значения, которые входят в состав комплексного сопротивления и проводимости и делают их величинами взаимообратными.
- Реактивные величины в комплексном сопротивлении и проводимости используются с противоположным знаком.
Угол сдвига фаз между напряжением и током всегда выражается, как главный аргументированный фактор комплексного сопротивления φ.
Источник
Напряжение при сдвиге
Воздействие внешней силы на грань приводит к возникновению в изделии изменения формы. Все напряжения делятся на две категории: нормальные и касательные. Нормальными считаются внутренние напряжения, возникающие в различных слоях изделия, подверженного деформации.
Напряжения и деформации при сдвиге описываются с применением аналитических выражений и графических изображений. Общее состояние описывается пространственным (трёхкоординатным) напряжением. Если в конкретном случае можно выявить сечения, в которых оба вида напряжений равны нулю, можно перейти к более простым моделям описания этого процесса. Ими являются двухкоординатное (плоское) напряжённое состояние или линейное. Две последних модели являются частными случаями трёхкоординатного напряжённого состояния.
Касательные напряжения являются мерой скольжения одного поперечного слоя относительно другого. В изменениях на поверхности каждого слоя возникают только касательные напряжения. Для оценки полной картины деформации используют следующие теоретические положения:
- закон парности касательных напряжений;
- вычисление экстремальных нормальных напряжений;
- определение всех тангенциальных напряжений.
Оценка их всех при деформации смещения позволят оценить прочность конструкции.
Изложение сути метода термомеханических коэффициентов для определения величины сопротивления деформации ( )
Из существующих методов определения текучести чаще всего используют метод термомеханических коэффициентов, как наиболее простой и доступный, позволяющий в то же время с достаточной для практики точностью вычислить σТ при заданных температуре, степени и скорости деформации.
По методике А.В. Третьякова термомеханические коэффициенты определяются по графикам зависимости коэффициентов Kt, Kε и Ku от температуры степени деформации и скорости деформации.
Возможно также использование в аналитических выражений для определения термомеханических коэффициентов, полученные П.Л. Клименко путем аппроксимации обобщенных кривых изменения Kt, Kε и Ku, в зависимоти от значения температуры, скорости и степени деформации.
Метод Л.В.Андреюка базируется на постоянных рассчитанных заранее величинах для каждой марки стали.
Классификация
В общем случае можно выделить следующие виды деформации: упругие и неупругие. Упругие, или обратимые, деформации исчезают после того, как пропадает воздействующая на них сила. Основа этого физического закона используется в силовых тренажёрах, например, в эспандере. Если говорить о физической составляющей, то в основе лежит обратимое смещение атомов — они не выходят за пределы взаимодействия и рамки межатомных связей.
Неупругие (необратимые) деформации, как вы понимаете, являются противоположным процессом. Любая сила, которую приложили к телу, оставляет следы/деформацию. К этому типу воздействия относится и деформация металлов. При таком типе изменения формы зачастую могут меняться и другие свойства материала. Например, при деформации, вызванной охлаждением, может увеличиться прочность изделия.
Методы изучения упругих свойств
Методы измерения упругих свойств можно подразделить на две большие группы, относимые к измерениям в естественном залегании и в лабораторных условиях.
Упругие модули горных пород измеряются двумя методами: статическим (изотермические) и динамическим (адиабатические модули).
Статический метод применяется для определения:
- модуля Юнга при одноосном сжатии, растяжении и изгибе стержня из породы;
- модуля сдвига при кручении образца;
- коэффициента Пуассона при измерении продольных и поперечных деформаций при одноосном сжатии;
- модуля объемного сжатия при сжатии образца всесторонним давлении.
Статистические способы определения статических деформаций основываются на наблюдениях ориентированных кристаллических образцов. Для этого используют крупные образцы в виде стержней или пластин. Длина стержня должна быть значительно больше, чем размеры поперечного сечения. Полученные величины деформаций используют для расчета значений упругих параметров вещества.
Во всех случаях измерение упругих параметров сводится к непосредственному измерению деформации сжимаемых образцов тензометрами различной конструкции.
С помощью динамического метода измеряют различные виды упругих волн в веществе и их затухание. Различают:
- динамический резонансный способ, где используют стоячие волны, возбуждаемые внешним источником на основной частоте;
- способ вращающей пластины на пути непрерывной упругой волны;
- способ последовательных ультразвуковых импульсов.
Для определения упругой характеристики горных пород в естественном залегании применяют вертикальное сейсмическое профилирование (ВСП), сейсмический каротаж (СК), акустический каротаж и полевые сейсмические методы. Ценные сведения о скоростных характеристиках дают сейсмические исследования методом преломленных и отраженных волн, особенно в районах, где общие черты геологического строения достаточно хорошо известны.
Закон Гука
Основным соотношением, объединяющим физические параметры для описания протекающих процессов, является закона Гука для деформации сдвига. Этот закон позволят решить задачу нахождения угла отклонения грани объекта от исходного положения.
Небольшие напряжения вызывают углы отклонения, которые имеют небольшие величины. На итоговое значение влияют следующие параметры:
- сила упругости (её вектор направлен вдоль поверхности);
- модуль упругости второго рода;
- площадь поверхности.
Различные материалы обладают своим значением модуля упругости. Он является величиной постоянной и определяет способность материала оказывать сопротивление возникающему сдвигу.
Вычисляют касательное напряжение на гранях с помощью закона Гука. Он справедлив для малых углов и представляет произведение модуля сдвига на величину угла. Согласно теории упругости он позволяет установить связь с модулем Юнга и коэффициентом Пуассона.
Графически действие закона Гука представлено прямой линией. В качестве уравнения этой линии может использоваться уравнение прямой с угловым коэффициентом подробно описанном в аналитической геометрии. Она проходит начало координат, выбранной системы отсчёта.
Определение и общие сведения о деформации сдвига
Основным признаком, характеризующим деформацию сдвига, является сохранение постоянства объёма. Не зависимо от того, в каком направлении действуют силовые факторы этот параметр остаётся неизменным.
Примеры проявления деформации сдвига можно обнаружить при проведении различного рода работ. К таким случаям относятся:
- при распиловке бруса;
- отрезание или рубка металла;
- в результате нарушения целостности крепления металлических или деревянных деталей, соединённых метизами;
- балки в местах крепления опор;
- места скрепления мостовых пролётов;
- крепёж на перемычках соединения железнодорожных рельс;
- разрезания листа бумаги ножницами.
При определённых условиях наблюдается чистый сдвиг. Он определяется как сдвиг, при котором на все четыре грани (например, прямоугольной детали) оказывают воздействие только напряжения, направленные по касательной к поверхности. В этом случае произойдёт плавный сдвиг всех слоёв детали от верхних к нижним слоям. Тогда внешняя сила изменяет форму детали, а объём сохраняется.
Для оценки величины сдвига и надёжности конструкции используют следующие параметры:
- величина, направление и точка приложения воздействующей силы;
- модуль сдвига;
- угол изменения внешних граней изделия;
- тангенциальное напряжение;
- модуль кручения (зависит от физико-механических характеристик материала);
Расчёт и практическое измерение этих параметров необходимы для оценки устойчивости и целостности конструкции. Формула, позволяющая вычислить допустимые изменения, учитывает все воздействия на конкретные слои детали и всю конструкции в целом.
В случае воздействия деформации величина угла считается пропорциональной внешней силе. Увеличение степени воздействия может превратить деформацию сдвига в срез. Это приведёт к разрушению не только элементов крепления (болтов, шпилек, заклёпок), но и всей детали.
Для наглядности изменения формы детали при деформации сдвига динамика процесса обозначается с помощью величины угла смещения и векторов возникающих напряжений. Действующая сила направлена в сторону смещения слоёв рассматриваемой детали.
В современных условиях угол сдвига измеряется различными техническими приборами. Основным прибором для измерения параметров смещения является тензомер. Эти приборы работают на различных физических принципах:
- оптические (в том числе лазерные);
- акустические;
- рентгеновские; электрические;
- пневматические.
В этих приборах относительная деформация сдвига обрабатывается на современных вычислительных средствах с применением соответствующего программного обеспечения. Каждый метод обладает своими достоинствами и недостатками. Их применение зависит от поставленной задачи, технической и финансовой возможности.
Кручение
Если виды механических деформаций разделяли бы по сложности вычислений, то этот занял бы первое место. Такой вид изменения формы тела возникает при воздействии на него двух сил. При этом смещение любой точки тела происходит перпендикулярно к оси воздействующих сил. Говоря о таком типе деформации, следует упомянуть следующие величины, подлежащие вычислению:
- Ф — угол закручивания цилиндрического стержня.
- Т — момент действия.
- Л — длина стержня.
- Г — момент инерции.
- Ж — модуль сдвига.
Формула выглядит так:
Ф=(Т*Л)/(Г*Ж).
Другая величина, требующая вычисления, это относительный угол закручивания:
Q=Ф/Л (значения берутся из предыдущей формулы).
Деформации на примере организма человека
Тело человека подвергается серьезным механическим нагрузкам от собственных усилий и веса, появляющихся по мере физической деятельности. Вообще, деформация (сдвиг) характерна для человеческого организма:
- Сжатие испытывает позвоночник, покровы ступней, нижние конечности.
- Растяжению подвергаются связки, верхние конечности, мышцы, сухожилья.
- Изгиб характерен для конечностей, костей таза, позвонков.
- Кручениям подвергается во время поворота шея, при вращении ее испытывают кисти рук.
Но при превышении показателей предельного напряжения, возможен разрыв, например костей плеча, бедра. В связках же ткани соединяются настолько эластично, что допускается растягивание их в два раза. Кстати, деформация сдвига объясняет всю опасность передвижения женщин на высоких каблуках. Вес тела будет переноситься на пальцы, что приведет к повышению нагрузки на кости в два раза.
По результатам медицинских осмотров, проводимых в школах, из десяти детей лишь одного можно считать здоровым. Как деформации связаны с детским здоровьем? Сдвиг, кручение, сжатие – основные причины нарушения осанки у детей и подростков.
Закон Гука
Основным соотношением, объединяющим физические параметры для описания протекающих процессов, является закона Гука для деформации сдвига. Этот закон позволят решить задачу нахождения угла отклонения грани объекта от исходного положения.
Небольшие напряжения вызывают углы отклонения, которые имеют небольшие величины. На итоговое значение влияют следующие параметры:
- сила упругости (её вектор направлен вдоль поверхности);
- модуль упругости второго рода;
- площадь поверхности.
Различные материалы обладают своим значением модуля упругости. Он является величиной постоянной и определяет способность материала оказывать сопротивление возникающему сдвигу.
Вычисляют касательное напряжение на гранях с помощью закона Гука. Он справедлив для малых углов и представляет произведение модуля сдвига на величину угла. Согласно теории упругости он позволяет установить связь с модулем Юнга и коэффициентом Пуассона.
Графически действие закона Гука представлено прямой линией. В качестве уравнения этой линии может использоваться уравнение прямой с угловым коэффициентом подробно описанном в аналитической геометрии. Она проходит начало координат, выбранной системы отсчёта.
Деформация изгиба
Рассмотрим примеры деформации данного вида. В случае изгиба, выпуклая часть тела подвергается некоторому растяжению, а вогнутый фрагмент сжимается. Внутри тела, подвергающегося данному варианту деформации, есть слой, который не испытывает ни сжатия, ни растяжения. Его принято называть нейтральным участком деформируемого тела. Вблизи него можно уменьшить площадь тела.
В технике примеры деформации данного типа используют для экономии материалов, а также для уменьшения веса возводимых конструкций. Сплошные брусья и стержни заменяют трубами, рельсами, двутавровыми балками.
Закон Гука
Основным соотношением, объединяющим физические параметры для описания протекающих процессов, является закона Гука для деформации сдвига. Этот закон позволят решить задачу нахождения угла отклонения грани объекта от исходного положения.
Небольшие напряжения вызывают углы отклонения, которые имеют небольшие величины. На итоговое значение влияют следующие параметры:
- сила упругости (её вектор направлен вдоль поверхности);
- модуль упругости второго рода;
- площадь поверхности.
Различные материалы обладают своим значением модуля упругости. Он является величиной постоянной и определяет способность материала оказывать сопротивление возникающему сдвигу.
Вычисляют касательное напряжение на гранях с помощью закона Гука. Он справедлив для малых углов и представляет произведение модуля сдвига на величину угла. Согласно теории упругости он позволяет установить связь с модулем Юнга и коэффициентом Пуассона.
Графически действие закона Гука представлено прямой линией. В качестве уравнения этой линии может использоваться уравнение прямой с угловым коэффициентом подробно описанном в аналитической геометрии. Она проходит начало координат, выбранной системы отсчёта.
Деформация кручения
Эта продольная деформация является неоднородным сдвигом. Она возникает при действии сил, направленных параллельно либо противоположно на стержень, у которого закреплен один конец. Чаще всего сложным деформациям подвергаются различные детали и механизмы, применяемые в конструкциях и машинах. Но благодаря сочетанию нескольких вариантов деформаций, существенно облегчается вычисление их свойств.
Кстати, в процессе существенной эволюции кости птиц и животных приняли трубчатый вариант строения. Такое изменение способствовало максимальному упрочнению скелета при определенной массе тела.