Трубка Пито. Принцип работы

Расчет скорости

Терминология

Пито регистрирует общее давление , которое создается совместным воздействием атмосферного давления и давления, возникающего в результате скорости ветра на датчике (или динамического давления ).

Статический выпуск (в сочетании с Pitot или без него) улавливает статическое давление, которое является атмосферным давлением в обычном смысле этого слова.

Анемометр измеряет разницу между этими двумя давлениями, а именно динамическое давление, и преобразует ее в указанную воздушную скорость . Эта скорость отличается от естественной скорости (которая увеличивается с высотой) и от скорости относительно земли (на которую влияет ветер ).

Случай несжимаемого потока

Принцип работы антенны Прандтля: трубка Пито на фронте потока обеспечивает полное давление P t , боковой выход обеспечивает статическое давление; манометр дифференциального давления показывает разницу между ними, то есть динамическое давление.

В случае несжимаемого потока (то есть в дозвуковом режиме для числа Маха меньше 0,3) скорость вычисляется с применением теоремы Бернулли . В воздухе можно пренебречь членом z , который дает прямую зависимость между скоростью и динамическим давлением p t -p s, которое измеряется датчиком давления или простым манометром  :

12ρv2+пsзнак равнопт⇒v2знак равно2(пт-пs)ρ{\ displaystyle {\ tfrac {1} {2}} \ rho v ^ {2} + p_ {s} = p_ {t} \ Rightarrow {v ^ {2}} = {2 (p_ {t} -p_ { s}) \ over \ rho}}
v = скорость (в м / с)
p s = статическое давление (в Па или Н / м²)
p t = общее давление (в Па или Н / м²)
ρ = плотность жидкости (в кг / м³, 1,293 для воздуха на уровне моря)

Случай сжимаемого потока

В случае сжимаемого потока (число Маха больше 0,3) необходимо использовать формулировку теоремы Бернулли, распространенную на сжимаемые потоки. Пренебрегая разницей в высоте z , для вычисления числа Маха используется следующее соотношение:

птпsзнак равно(1+γ-12M2)γγ-1{\ displaystyle {\ frac {p_ {t}} {p_ {s}}} = \ left (1 + {\ frac {\ gamma -1} {2}} M ^ {2} \ right) ^ {\ frac {\ gamma} {\ gamma -1}}}

M = число Маха
p t = полное давление
p s = статическое давление
γ = отношение теплоемкостей жидкости C p / C v .

На практике нас больше не интересует измерение динамического давления, определяемого как p t – p s  ; Системы, разработанные для этого диапазона скоростей, измеряют статическое и полное давление отдельно и передают значения в компьютер.

История развития

В 1732 году Анри де Пито опубликовал проект « машины для измерения скорости текущей воды и следа за кораблями ». Этот принцип используется по сей день.

Однако у развития Пито все же были слабые места. Он состоял из двух расположенных рядом друг с другом трубок, одна из которых была изогнута на 90 ° на нижнем конце для направления в поток воды, а вторая прямая трубка воспринимала статическое давление. Однако при таком расположении труба для измерения статического давления находилась в зоне турбулентности, вызванной изгибом трубы перед ней. Кроме того, имелись теоретические недостатки в отношении преобразования разности давлений в расход. Из-за постоянных колебаний можно было сделать только очень неточные измерения.

В 1775 году Джеймс Линд измерил скорость ветра с помощью анемометра с трубкой Пито . В этом случае U-образная трубка снова была изогнута вперед на 90 ° на переднем конце, как показано на рисунке выше, и заполнена жидкостью. Проникающий воздух толкал воду по задней трубе Us вверх по шкале. Чтобы повысить чувствительность, Уильям Сноу-Харрис значительно увеличил воздухозаборник в 1858 году .

Начиная с 1856 года, прибор, разработанный Пито, был решительно доработан Генри Дарси путем присоединения клапанов, создания вакуума над трубами, перемещения входа статической трубы в сторону – и, таким образом, за пределы турбулентности трубы Пито – и разработана новая формула расчета расхода. Дальнейшие разработки Дарси также в основном использовались для измерения проточной воды.

Людвиг Прандтль разработал версию трубки Пито, которая используется до сих пор. Как это работает, описано выше.

Устройство трубки Пито

Устройство трубки Пито очень простое. Состоит из двух трубок – первой прямой пустотелой, которая называется пьезометром, и второй выгнутой также пустотелой. Эти трубки монтируются в один корпус, в котором находится исследуемая жидкость или газ. В практическом использовании все изготавливаемые трубки имеют свои поправочные коэффициенты на потерю энергии и разность расположения трубок.

На рисунке 3 изображено устройство трубки Пито.

Устройство трубки Пито

Трубки с наконечниками и насадками изготавливаются из нержавеющей стали марки 12Х или латуни марки Л-59. Все соединения трубок с насадками и наконечниками, как правило, выполняются пайкой для точной герметизации относительно окружающего воздуха.

Теоретические основы трубки Прандтля Пито

Основной принцип действия зонда Прандтля (трубки Пито) на манометре с U-образной трубкой

Уравнение Бернулли на зонде Прандтля (трубка Пито) для измерения скорости потока V

Трубка Пито работает в соответствии с основами гидродинамики и является классическим примером практического применения уравнений Бернулли . Он состоит из трубы, которая выровнена параллельно потоку таким образом, чтобы поток попадал в отверстие трубы спереди. Задняя часть трубки жестко соединена с устройством измерения давления .

Скорость потока жидкости или газа измеряется через трубку Пито в зависимости от динамического давления . Это основано на следующих соображениях (показано здесь на U-образном манометре ):
Типы давления

Общее давление является давление , которое действует на движущееся тело средой, жидкости или газа вокруг него, в направлении движения среды. Это полное давление измеряется трубкой Пито, когда
  1. обтекающая среда останавливается (пример: измерение расхода жидкостей) или
  2. неподвижная среда доводится до точной скорости объекта движущимся объектом. (Пример: трубка Пито на самолете).
Не имеет значения, перемещается ли трубка Пито или среда во время измерения. Оба результата дают представление об относительном потоке вокруг трубки Пито, и важна только относительная скорость. Общее давление, измеренное трубкой Пито, можно далее разделить на динамическое давление и статическое давление в текущей среде.
Обратное давление (также динамическое давление ) является давлением , которое текучая среда оказывает на его скорость и его масса (плотность). Он характеризует долю кинетической энергии текучей среды. Чем быстрее поток и чем больше масса (плотность) потока, тем больше динамическое давление.
Статическое давление представляет собой часть потенциальной энергии в общей энергии среды. Это соответствует давлению воздуха все еще окружающего воздуха , в котором трубка Пито расположена. В неподвижной среде статическое давление равно общему давлению, так как динамическое давление становится равным 0.

Сумма динамического давления и статического давления всегда регистрируется в трубке Пито . Общее давление измеряется трубкой Пито. В связи с измерением статического давления и датчиком перепада давления скорость потока среды может быть рассчитана в соответствии с законом Бернулли, если ее плотность известна.

Самолеты и аварии

Пито-статическая система – это система чувствительных к давлению инструментов, которая чаще всего используется в авиации для определения воздушной скорости , числа Маха , высоты и тренда высоты . Система статики Пито обычно состоит из трубки Пито, статического порта и инструментов статики Пито. Ошибки в показаниях статической системы Пито могут быть чрезвычайно опасными, поскольку информация, полученная от статической системы Пито, например, воздушная скорость, потенциально критична для безопасности.

Несколько инцидентов и происшествий с коммерческими авиакомпаниями были связаны с отказом статической системы Пито. Примеры включают рейс 2553 Austral Líneas Aéreas , рейс 6231 Northwest Airlines , рейс 301 Birgenair и один из двух X-31 . Французское агентство по безопасности полетов BEA заявило, что обледенение трубки Пито стало одной из причин крушения рейса 447 авиакомпании Air France в Атлантическом океане . В 2008 году компания Air Caraïbes сообщила о двух случаях неисправности обледенения трубки Пито на своих самолетах А330.

На рейсе 301 авиакомпании Birgenair произошел фатальный отказ трубки Пито, который, как подозревали исследователи, произошел из-за того, что насекомые создали гнездо внутри трубки Пито; Главный подозреваемый – черно-желтая грязевая оса.

На рейсе 603 Aeroperú произошел фатальный отказ системы статического электричества из-за того, что уборочная бригада оставила статический порт заблокированным лентой.

Достоинства и недостатки аппарата Пито

К преимуществам трубки Пито относятся:

  • простота в изготовлении;
  • конструктивная прочность. Трубка Пито изготавливается из твердых материалов: никелированной латуни или нержавеющей стали;
  • хорошо подходят к измерению высоких скоростей жидкостей или газов (воздуха) даже при высоких температурах до 800 градусов по Цельсию;
  • имеют несколько модификаций: стационарных (непосредственно установленных на трубопровод, газоход в месте измерений) и переносных, вставляемых через специальные штуцера – для измерений расхода и давления газа (воздуха).

К недостаткам можно отнести:

очень высокая восприимчивость к засорениям трубок твердыми и грубодисперсными примесями и частицами, присутствующими в жидкости или газе; возможность использования ограничена в тех местах, где очень важно не создавать большого гидравлического или аэродинамического сопротивления движущемуся навстречу потоку жидкости или газа; качество и точность показаний измеренной величины напрямую зависит от температуры жидкости (газа) и ориентации трубки в пространстве трубы. Широкое применение прибор трубка Пито нашел в различных отраслях промышленности, к примеру – в авиационном строении применяется в качестве приемников потоков воздуха для определения скорости полета и его высоты. Широкое применение прибор трубка Пито нашел в различных отраслях промышленности, к примеру – в авиационном строении применяется в качестве приемников потоков воздуха для определения скорости полета и его высоты

Широкое применение прибор трубка Пито нашел в различных отраслях промышленности, к примеру – в авиационном строении применяется в качестве приемников потоков воздуха для определения скорости полета и его высоты.

Как работает трубка Пито

Представим, что жидкость под каким-то неизвестным давлением течет по трубе, как изображено на рисунке 2.

Принцип работы трубки Пито в потоке жидкости

Соответственно, в первой А манометрической трубке (слева) со свободным выходом жидкость поднимется вверх до определенной отметки – hs. В случае подсоединения манометра к свободному концу, он покажет давление, которое жидкость оказывает на стенки трубопровода. Данная величина устанавливает: на сколько статическое давление жидкости больше атмосферного.

Необходимо отметить, что отверстие монтируется в трубопроводе в строгой перпендикулярности во избежание большой погрешности измерения. Это значит, что давление измеренное в трубке А не зависит от скорости потока жидкости.

Вторая же трубка В формой Г является напорной и опущена в жидкость – навстречу движущемуся потоку. Газ или жидкость, движущаяся с определенной скоростью, будет заполнять полость трубки. К свободному концу трубки также присоединим контрольно-измерительный прибор – манометр. Входящий поток жидкости, ударяясь о стенки внутри трубки, будет создавать определенное давление, контролируемое манометром с другой стороны.

Уровень жидкости в манометрической трубке В ht будет состоять из 2-х складывающихся физических величин: статического напора и напора, который создается скоростным движением потока. Скоростной напор определяется разностью уровней в трубках h=ht-hs.

Таким образом, мы имеем две абсолютно разные величины измеренного давления вертикальной трубкой и трубкой Пито. В этом и состоит основной принцип работы трубки Пито, в частности, сумма статического и скоростного напоров составит величину полного напора жидкости в трубе. А для нахождения расхода жидкости в данном сечении трубопровода берется разность двух этих физических величин.

Да, разобрался с первого раза

Пришлось перечитать несколько раз

Вообще не понял что такое пито

Чтобы проголосовать, кликните на нужный вариант ответа.
Результаты

Как измеряется давление потока?

В конструкциях трубки Пито (с двойными стенками) ударное давление направлено вперёд, в поток. В обычных конструкциях ось движения рабочей среды совмещается с осью внешней трубки. Оба сигнала давления направляются по трубопроводу на индикатор или преобразователь.

Для промышленных применений статическое давление  может быть измерено тремя способами:

  1. Через отводы в стенке трубы.
  2. Статическими зондами Пито, вставленными в технологический поток.
  3. При помощи небольших отверстий, расположенных либо на самой трубке Пито, либо на отдельном аэродинамическом элементе.

Точность функционирования расходомеров данной конструкции зависит от формы аэродинамических тел, окружённых постоянным потоком рабочей среды, а также от характеристик её вязкости, скорости и сжимаемости. Ключом к повышению точности показаний является минимизация кинетической составляющей при измерении давления.

Специально разработанные датчики Пито пригодны и для работ в пульсирующих потоках. Для этого используется зонд Пито, заполненный силиконовым маслом, который служит для передачи давления процесса. В высокочастотных пульсирующих применениях масло служит также средством демпфирования пульсаций и усреднения давления.

Теория Операции

Основная трубка Пито состоит из трубки, направленной прямо в поток жидкости. Поскольку в этой трубке находится жидкость, можно измерить давление; движущаяся жидкость останавливается (застаивается), поскольку нет выхода для продолжения потока. Это давление представляет собой давление застоя жидкости, также известное как полное давление или (особенно в авиации) давление Пито .

Измеренное давление торможения само по себе не может использоваться для определения скорости потока жидкости (воздушной скорости в авиации). Однако уравнение Бернулли гласит:

Давление застоя = статическое давление + динамическое давление

Что тоже можно написать

птзнак равнопs+(ρты22).{\ displaystyle p_ {t} = p_ {s} + \ left ({\ frac {\ rho u ^ {2}} {2}} \ right) \ ,.}

Решение этого для скорости потока дает

тызнак равно2(пт-пs)ρ,{\ displaystyle u = {\ sqrt {\ frac {2 (p_ {t} -p_ {s})} {\ rho}}} \ ,,}

где

  • ты{\ displaystyle u}- скорость потока ;
  • пт{\ displaystyle p_ {t}} застой или полное давление;
  • пs{\ displaystyle p_ {s}}- статическое давление ;
  • и – плотность жидкости.ρ{\ displaystyle \ rho}

ПРИМЕЧАНИЕ. Приведенное выше уравнение применимо только к жидкостям, которые можно рассматривать как несжимаемые. Жидкости считаются несжимаемыми почти во всех условиях. Газы при определенных условиях можно считать несжимаемыми. См. Сжимаемость .

Таким образом, динамическое давление – это разница между давлением торможения и статическим давлением. Затем динамическое давление определяется с помощью диафрагмы внутри закрытого контейнера. Если воздух с одной стороны диафрагмы находится под статическим давлением, а с другой – с давлением торможения, то прогиб диафрагмы пропорционален динамическому давлению.

В самолетах статическое давление обычно измеряется с помощью статических отверстий на боковой стороне фюзеляжа. Измеренное динамическое давление можно использовать для определения указанной воздушной скорости самолета. Описанное выше устройство диафрагмы обычно содержится в индикаторе воздушной скорости , который преобразует динамическое давление в показания воздушной скорости с помощью механических рычагов.

Вместо отдельных портов Пито и статических отверстий можно использовать статическую трубку Пито (также называемую трубкой Прандтля ), которая имеет вторую трубку, коаксиальную с трубкой Пито, с отверстиями по бокам, за пределами прямого воздушного потока, для измерения статического давления. .

Если столба жидкости используется для измерения перепада давления ,
Δп≡пт-пs{\ displaystyle \ Delta p \ Equiv p_ {t} -p_ {s}}

Δчасзнак равноΔпρлграмм,{\ displaystyle \ Delta h = {\ frac {\ Delta p} {\ rho _ {l} g}} \ ,,}

где

  • Δчас{\ displaystyle \ Delta h} – перепад высот колонн;
  • ρл{\ displaystyle \ rho _ {l}} – плотность жидкости в манометре;
  • g – стандартное ускорение свободного падения .

Следовательно,

тызнак равно2Δчасρлграммρ.{\ displaystyle u = {\ sqrt {\ frac {2 \, \ Delta h \, \ rho _ {l} g} {\ rho}}} \ ,.}

Физический принцип изобретения Анри Пито

Вода хлынула из потока на препятствие.

Работа простой трубки Пито в потоке воды легко понять, если учесть, что жидкая частица, наделенная определенной скоростью, благодаря этой скорости имеет импульс, который может позволить ей подняться на определенную высоту. . Точно так же любой, кто бросает камень вертикально, знает, что этот камень будет подниматься тем выше, чем больше ему была придана начальная скорость.

Со времен Галилея и его исследований падения тел мы знаем, что с вертикальной начальной скоростью камень поднимается до:
V{\ displaystyle V}

часзнак равноV22грамм{\ displaystyle h = {\ frac {V ^ {2}} {2g}}}
(это без учета аэродинамического сопротивления камня).

То же самое и для частицы воды, обладающей почти горизонтальной скоростью , при условии, что ей позволено постепенно изменять направление своей траектории без слишком большого рассеивания энергии (представляя ее в виде своего рода трамплина).
V{\ displaystyle V}

Итак, когда вы окунете руку в поток потока (как на анимации напротив), вы увидите, что вода поднимается до определенной высоты.

Знание, действительно ли высота, достигаемая таким образом водой, равна высоте, могло бы стать хорошим упражнением в физике средней школы (мы можем ожидать определенных потерь энергии в воде из-за вязкого трения).
часзнак равноV22грамм{\ displaystyle h = {\ frac {V ^ {2}} {2g}}}

Анри Пито поступил более проницательно: в первом эксперименте, который он с энтузиазмом импровизировал, когда ему в голову пришла идея создания МАШИНЫ ДЛЯ ИЗМЕРЕНИЯ СКОРОСТИ БЕГАЩЕЙ ВОДЫ И ПОСЛЕ СУДОВ, он заменил руку простой изогнутой стеклянной трубкой против течения, и при таком расположении больше нет потерь энергии: частицы воды, которые поднимаются в стеклянной трубке, очень быстро теряют свою скорость (после стабилизации водяного столба по высоте): поэтому больше нет страха перед потеря энергии за счет вязкого трения.

В случае с этой трубкой Пито высота h, достигаемая водой в трубке, действительно равна:

часзнак равноV22грамм{\ displaystyle h = {\ frac {V ^ {2}} {2g}}}
si – это скорость потока, направленного ко входу в трубу, и сила тяжести Земли.V{\ displaystyle V}грамм{\ displaystyle g}

Применение

Трубки Пито могут быть использованы в трубах и воздуховодах любого сечения – круглого, квадратного, прямоугольного. Ввиду своей простоты и надёжности такие расходомеры применяются даже в турбинных установках гоночных автомобилей и скоростных истребителей. В промышленных применениях трубки Пито используются для измерения потока жидкости в водосливах и открытых каналах.

Хотя точность и дальность действия относительно низки, трубки Пито недороги и подходят для различных условий окружающей среды, включая экстремально высокие температуры и широкий диапазон давлений.

Монтаж этих устройств заключается в следующем:

  1. Трубку Пито пропускают через отверстие в канале.
  2. Закрепляют её при помощи фланца или сальника.
  3. Устанавливают внешний индикатор, который показывает относительное отклонение между осями трубы/канала и приёмной трубки.
  4. При возможном наличии в потоке мелкодисперсных твёрдых частиц (например, угольной пыли) перед расходомером монтируют съёмный пробоотборник.
  5. Если температура потока может резко изменяться, предусматривают установку управляющей термопары.

Точность показаний — от 0,5% до 5% полной шкалы.

Преимуществами трубок Пито являются низкая стоимость, отсутствие движущихся частей, простота и отсутствие потерь давления в текущем потоке.

Основные недостатки — ошибки, возникающие в результате изменения профиля скорости или закупорки портов давления.

Трубки Пито целесообразно использовать для измерения расхода рабочей среды там, где важна стоимость устройства, а также при значительных диаметрах трубы или воздуховода.

Сверло-фреза. Два в одном!

Вертлюг. Виды и применение

Приложения

О других проектах Викимедиа:

трубка Пито , на Викискладе?

  • Анемометр
  • Махметр
  • Статическое давление
  • Динамическое давление
  • Общее давление

Внешние ссылки

Измерительные приборы

Акустический
Угол и положение
  • Алидада
  • Аксиометр
  • Компас
  • Повторяющийся круг
  • Компас
  • Половина квадрата
  • GPS
  • Графометр
  • Гониометр
  • Инклинометр
  • Репортер
  • Октант
  • Квадрант
  • Секстант
  • Ситометр
  • Тахеометр
  • Теодолит
  • Наклономер
Химический состав
  • Спиртометр
  • Жиромер
  • Галактометр
  • PH метр
  • RH-метр
  • Сахариметр
  • Спектрофлуориметр
  • Масс-спектрометр
  • Урометр
Расстояние и напряжение
  • Высотомер
  • Калибровочный блок
  • Датчик перемещения
  • Катетометр
  • Celometer
  • Сюрвейерская сеть
  • Измерительная колонна
  • Компаратор
  • Курвиметр
  • Дендрометр
  • Дилатометр
  • Crackmeter
  • Иконометр
  • Интерферометр
  • Измеритель толщины
  • Поплавковый манометр
  • Тензодатчик
  • Глубиномер
  • Куч
  • Координатно-измерительная машина
  • Измерительная лента
  • Складывающееся правило
  • Микрометр
  • Одометр
  • Каверномер
  • Голубь
  • Шагомер
  • Правило
  • Батиметрический эхолот
  • Тахеометр
  • Таксометр
  • Дальномер
    • Лидар
    • Радар
    • Сонар
    • Стадиметрический
  • Теллурометр
  • Типометр
  • Таблица высот
  • Верньер
Кинематографический
  • Акселерометр
  • Анемометр
  • Annubar
  • Синемометр
  • Тахометр
  • Лох (лодка)
  • Тахометр
  • Трубка Пито
  • Измеритель скорости
  • Лазерный виброметр
Механический
  • Барометр
  • Гаечный ключ
  • Измеритель плотности
  • Динамометр
  • Манометр
  • Пенетрометр для полутвердых материалов
  • Пенетрометр почвы
  • Реометр
  • Ножницы
  • Измеритель давления
  • Трибометр
  • Вакуумметр
  • Динамический механический анализатор
  • Вискозиметр
    • Чашка вязкости

      Кубок Зан

    • Вискозиметр с падающим шариком
    • Вискозиметр Марша
Электричество
  • Электроэнергия
    • Гальванометр
    • Амперметр
  • Электрический заряд

    Электрометр

  • Электрический потенциал

    Вольтметр

  • Сопротивление
    • Омметр
    • Мегомметр
    • Теллурометр
    • Измеритель проводимости
  • Спектрометр
  • Измеритель емкости
  • Кулонметр
  • Диэлектриметр
  • Частотомер
  • Мультиметр
    • Напряжение
    • Интенсивность
  • Осциллограф
  • Тестер компонентов
Электромагнетизм и оптика
  • Актинометр

    Актинограф

  • Болометр
  • Колориметр

    Видимый спектр

  • Магнитное поле
    • Измеритель потока
    • Измеритель индуктивности
    • Магнитометр
    • Тесламетр
  • Дифрактометр
  • Люксметр
  • Фотометр
  • Поляриметр
  • Радиометр
  • Спектрофотометр
  • Страбометр
Мощность / энергия
  • Ваттметр
  • Электросчетчик
Количество материи
  • Термогравиметрический анализатор
  • Остаток средств
  • Детектор частиц
    • Камера тумана
    • Пузырьковая камера
    • Искровая камера
    • Комната сына
    • Ионизационная камера
  • Влажность
    • Гигрометр
    • Термогигрометр
    • Термобаланс
  • Оксиметр
  • Шкала
  • Песон
  • Общественный вес
Радиоактивность
  • счетчик Гейгера
  • Дозиметр
  • Счетчик обзора
ОбластьПланиметр
Температура
  • Калориметр
  • Термистор
  • Термопара
  • Термометр
  • Термоскоп
Время
  • Планисферическая астролябия
  • Солнечные часы
  • Секундомер
  • Клепсидра
  • Радиометрическое датирование
  • Механические часы
    • кварц
    • атомный
    • электрический
    • ядерный
  • Таймер
  • Смотреть
  • Маятник
  • песочные часы
Объем и расход
  • Ареометр
  • Балометр
  • Бюретка
  • Счетчик тока
  • Расходомер
  • Эвдиометр
  • Бюретка
  • Мерная колба
  • Датчик приливов и отливов
  • Пипетка
  • Пипетка пастера
  • Капельница
  • Пикнометр
  • Спирометр
  • Мерный стакан

Технологический портал

Рекомендации

Заметки

Библиография

  • Кермод, AC (1996) . Механика полета . Барнард, Р.Х. (ред.) И Филпотт, Д.Р. (ред.) (10-е изд.). Прентис Холл. С. 63–67. ISBN 0-582-23740-8.
  • Пратт, Джереми М. (2005) . Курс лицензирования частного пилота: принципы полета, общие знания о самолетах, летные характеристики и планирование (3-е изд.). gen108 – gen111. ISBN 1-874783-23-3.
  • Титдженс, О.Г. (1934). Прикладная гидро- и аэромеханика по лекциям доктора философии Л. Прандтля . Dove Publications, Inc., стр. 226–239. ISBN 0-486-60375-X.
  • Салех, Дж. М. (2002). Справочник по потоку жидкости . McGraw-Hill Professional.
Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий