Полигональное моделирование

Делаем модели из бумаги, пепакура для развёртки

На примере кота мы видим, как выглядят схемы и развёртки полигональных фигур. Это также может быть собака, мышка, или другое животное. Для того что бы всё получилось нужен хороший качественный набор в pdf. Как правило бесплатные имеют дефекты, так как создавались новичками, профи уже требуют цену за свой труд.

Натуральный кот и шикарный олень из бумаги. Скульптура в мини-размере для украшения интерьера.

Дизайнерский loft черно-золотой бык в декоре стены. Если вы создаёте крупные фигуры розового слона или большую голову лося вам нужен плотный картон для моделирования.

model head

Черно-белый набор смешных человечков из картона и сложная модель Хаски.

Генератор Делоне

Триангуляция Делоне – это математическая функция, которая позволяет построить треугольники таким образом, что проходящая через угловые точки окружность, не содержит точек других треугольников. Была впервые описана в 1934 году советским математиком Борисом Делоне.

Генератор Делоне – это онлайн приложение, основанное на вышеизложенных принципах. Предлагаемый инструмент позволяет генерировать простые фоны и содержит в себе расширенный функционал, который позволяет добавлять до 7 виртуальных источников света и придавать особую привлекательность генерируемому изображению. У источников света можно настраивать цвет и их интенсивность.

Основные возможности:

  • Генерация простых фонов
  • 7 Виртуальных источников света
  • Сохранение в SVG

Программы для 3Д моделирования

  • Autodesk Mudbox – программа, специализирующаяся на высокополигональном моделировании;
  • ZBrush от Pixologic – программа специально созданная для высокополигонального моделирования и 3Д скульптинга;
  • Houdini от компании Side Effects Software;
  • Lightwave 3D от компании NewTek;

Modo от компании Luxology;

  • Rhinoceros 3D – программа, специализирующаяся на NURBS моделировании;
  • Cinema 4d от компании Maxon;
  • прочие.

Команда 3Д дизайнеров и моделлеров KOLORO обладает большим опытом в создании 3Д моделей, мы используем различные виды моделирования и различные программы для моделирования объектов. К каждому заказчику у нас индивидуальный подход, и в процессе работы с ним, мы оказываем необходимую поддержку, консультируем по спорным и сопутствующим вопросам. Мы гарантируем высокое качество выполненных нами работ и четкое соблюдение условий и требований клиента.

Свяжитесь с нами по телефону или заполните форму обратной связи для того, чтобы мы могли предложить Вам оптимальную схему выполнения вашего проекта. Отправьте нам свою 3Д модель для просчета стоимости.

Наши контакты: +38(057)-760-26-05; +38(057)-760-26-06; +38(099)-618-87-50;

Что из себя представляют полигон, полигональное моделирование и полигональные модели?

Полигоном, как правило, является многоугольник, причем, с разным количеством углов. Четырехугольник, как правило, применяется при компьютерном моделировании чаще остальных фигур. Это совсем не исключает применение и трех и пятиугольников. То есть, если сказать короче, то плоская геометрическая фигура с ребрами и углами будет полигоном.

Полигональным моделированием называется создание сетки полигонов, повторяющей формы нужных объектов. Грубо говоря, если построить много полигонов, и соединить их между собой сеткой, то образуется единая форма объектов.

Полигональная модель создается при помощи сетки, и чем больше полигонов в объекте, тем более он реалистичен. Если сравнить между собой графику сегодняшних компьютерных игр и тех, которые были хотя бы двадцать лет назад, то вы увидите огромную разницу в прорисовке и четкости картинки.

В наше время полигонные модели вновь на пике популярности, только уже на мониторах компьютеров, а в реальной жизни. Стали появляться люди, которые могут изготовить объемные скульптуры из различных подходящих для этого материалов. В их качестве используют бумагу, пластик, дерево…

Геометрическая теория и многоугольники

Базовым объектом, используемым при моделировании сетки, является вершина, точка в трехмерном пространстве. Две вершины, соединенные прямой линией, становятся край. Три вершины, соединенные между собой тремя ребрами, определяют треугольник, что является самым простым многоугольник в Евклидово пространство. Более сложный полигоны может быть создан из нескольких треугольников или как один объект с более чем 3 вершинами. Четырехсторонние многоугольники (обычно называемые четырехугольниками) и треугольники являются наиболее распространенными формами, используемыми в многоугольном моделировании. Группа многоугольников, соединенных друг с другом общими вершинами, обычно называется элемент. Каждый из многоугольников, составляющих элемент, называется лицо.

В Евклидова геометрия, любые три неколлинеарные точки определяют самолет. По этой причине треугольники всегда находятся в одной плоскости. Однако это не обязательно верно для более сложных полигонов. Плоский характер треугольников позволяет легко определить их нормальная поверхность, трехмерный вектор, перпендикулярный поверхности треугольника. Нормали поверхности полезны для определения переноса света при трассировке лучей и являются ключевым компонентом популярного Затенение по Фонгу модель. Некоторые системы рендеринга используют нормали вершин вместо нормали граней, чтобы создать более красивую систему освещения за счет большей обработки

Обратите внимание, что у каждого треугольника есть две нормали граней, которые указывают в противоположных направлениях друг от друга. Во многих системах только одна из этих норм считается действительной – другая сторона многоугольника называется задняя сторона, и могут быть сделаны видимыми или невидимыми в зависимости от желания программиста

Много программы моделирования не применяйте строго геометрическую теорию; например, две вершины могут иметь два разных ребра, соединяющих их, занимающих точно такое же пространственное положение. Также возможно, чтобы две вершины существовали в одних и тех же пространственных координатах, или две грани существовали в одном месте. Подобные ситуации обычно нежелательны, и многие пакеты поддерживают функцию автоматической очистки. Однако, если автоматическая очистка отсутствует, их необходимо удалить вручную.

Группа многоугольников, соединенных общими вершинами, называется сетка. Чтобы сетка выглядела привлекательно при оказано, желательно, чтобы это было несамопересекающийся, что означает, что ни одно ребро не проходит через многоугольник. С другой стороны, сетка не может пробить сама себя. Также желательно, чтобы сетка не содержала ошибок, таких как удвоение вершин, ребер или граней

Для некоторых целей важно, чтобы сетка была многообразие – то есть, что он не содержит дыр или сингулярностей (мест, где два различных участка сетки соединены одной вершиной)

Решение

Насколько далеко вы продвинетесь в снижении этого эффекта зависит только от вас, но важно всегда держать в голове вашу конечную цель. Только вы можете решать, когда желаемое отражение уже максимально хорошее или можно получить более чистый меш

Создаёте ли вы его для статичной картинки? Сколько изображений вы можете создать? Можете ли вы исправить отражения в Photoshop или сделать это для анимации? Или же вы просто моделируете для своего удовольствия и желаете создать идеальную машину?

Перед тем как переходить к любому сложному объекту, как например, автомобилю, лучше опробовать на простых примерах, а потом рассмотреть некоторые практические случаи.

Взаимодействия с полигонами и их составляющими.

Для начала необходимо применить к объекту модификатор Edit Poly. Для этого нужно перейти на вкладку Modify – Modifier List – Edit Poly. Я рекомендую использовать именно его, потому что при желании его свободно можно удалить со всеми внесенными изменениями. Если вы превратите объект в Editable Poly, то вернуть объект к начальному виду будет сложнее.

Для того, чтобы выбирать подобъекты, необходимо включить редактирование точек (Vertex), ребер (Edge), краев (Border), полигонов (Polygons) или элементов (Elements) в разделе Selection. После этого понадобится только нажать на те подобъекты, которые нужно менять.

Точкой, ребром и целым полигоном можно управлять с помощью стандартных инструментов передвижения, вращения и масштабирования. Эти инструменты можно найти на панели Main Toolbar. Это самый базовый способ придания формы и формирования целого объекта.

Взаимодействие с точками немного отличается в зависимости от того, сколько точек выделено. Если выделена одна точка, то ее можно только двигать. Другие инструменты эффекта не дадут. К другим типов редактирования это не относится.

Если выделено две и более точек, то их можно перемещать все вместе, а также вращать и масштабировать вокруг их общего центра. Все то же самое справедливо и для остальных типов редактирования.

Удалить полигоны можно клавишей Delete. Точки и ребра лучше удалять клавишей Backspace.

Так же стоит сказать об одном очень удобном способе создания формы с помощью клавиши Shift. С помощью это клавиши легко копировать объекты. Так же копировать можно и полигоны. Но если попытаться скопировать так край (Border), то он вытянется вместе с новыми полигонами. Используя инструменты передвижения, вращения и масштабирования с зажатой клавишей Shift, можно создать практически любую форму даже из одного полигона.

Выбор подобъектов

Шаг 1. Sub-Object Шаг 2. Шаг 3. SelectionТаблице 1 Рисунок 2. Инструменты для работы с редактируемой сеткой (редактируемым каркасом).
Таблица 1: Назначение инструментов редактирования сетки (редактирования каркаса):

Название Уровень: V – вершина, Edg – ребро, F –треугольная грань, Poly – грань.Назначение кнопки
1 Create V, F, PolyДобавление элементов.
2 Delete V, Edg, F, PolyУдаление элементов.
3 Attach V, Edg, F, PolyПрисоединение других (независимых) (Attach List) объектов сцены. Объекты другого типа автоматически конвертируются в объекты типа Mesh.
4 Detach V, Edg, F, PolyОтделение подобъектов с созданием на их основе независимого объекта. Появляется диалоговое окно, где нужно ввести имя, флажок Detach as Clone позволяет отделить не сам подобъект, а его копию.
5 Divide, Break V, Edg, F, PolyОперация Divide делит подобъект на две части. Операция Break разбивает выделенные вершины так, чтобы ни одна из них не принадлежала более
чем одной грани.
6 Turn EdgПоворот выделенной грани на 90° с образованием на ее основе двух треугольных граней, где данная грань
является общей.
7 Extrude Edg, F, PolyВыдавливание подобъектов. Величина выдавливания вводится в соседнее поле.
8 Chamfer, Bevel
(F, Poly, Edg)
V, Edg, F, PolyКнопка Chamfer позволяет создать фаску на основе выбранных подобъектов. Bevel позволяет стянуть
или расширить выбранную совокупность.
9 SlicePlane V, Edg, F, PolyУстановка вспомогательной плоскости для операции Slice.
10 Slice V, Edg, F, PolyНа месте пересечения плоскости и объекта создаются новые элементы.
11 Cut Edg, F, PolyИнструмент позволяет вручную создавать новые ребра и рассекать грань, добавляя ребро. При установленном флажке Split создаются две вершины на концах точек рассечения ребер. Установка флажка Refine Ends ведет к разбиению примыкающих граней,
чтобы предотвратить появление ненужных отверстий.
12 Selected VИнструмент позволяет удалить вершины путем их аппроксимации в одну усредненную общую (слияние);
граница (минимальное расстояние между вершинами, при котором начинает действовать слияние) задается рядом. Операция применяется к выделенной совокупности вершин.
13 Target VДействие кнопки подобно Selected, но усредненную точку пользователь выбирает сам (значение в рядом
расположенном поле задает максимальную дистанцию между указателем мыши и целью, при которой происходит слияние).
14 Tessellate F, PolyДобавляет грани сразу ко всему объекту, т.е. происходит разбиение на более мелкие части.
15 Explode F, PolyОтделяет подобъект либо в подобъект, который находится внутри объекта (Element), либо в независимый объект (Object).
16 Remove Isolated
Vertices
V, Edg, F, PolyУдаление вершин, которые не связаны гранями.
17 Select Open Edges EdgВыделяет ребра, которые входят только в одну грань.
18 Create Shape
from Edges
EdgСоздание формы из ребра.
19 View Align V, Edg, F, PolyВыравнивание по плоскости активной проекции.
20 Grid Align V, Edg, F, PolyВыравнивание по активной решетке.
21 Make Planar V, Edg, F, PolyПревращение набора граней в плоскость.
22 Collapse V, Edg, F, PolyИнструмент позволяет объединить (свернуть) все вершины в одну.

Ликбез по 3D-моделированию

Что это 

3D-моделирование — раздел компьютерной графики, посвященный созданию трёхмерных визуальных объектов при помощи профильного ПО. Простыми словами, в специальных программах делаются объемные картинки.

Для чего нужно

  • Индустрия развлечений. 3D-моделирование применяется в фильмах, для создания анимации и видеоигр. Ну и, конечно же, какое без этого обустройство метавселенных? 
  • Создание прототипов. Современную 3D-графику трудно отличить от фото, поэтому с её помощью можно создавать эффектные презентации проектов для клиентов, партнёров и инвесторов. Например, её используют для визуализации зданий и интерьеров, для моделирования результатов пластических операций. 
  • Производство. Детали, украшения и даже медицинские протезы — всё, что будет воплощено в реальном мире может быть смоделировано, а потом напечатано на 3D-принтере или произведено на другом устройстве.

3D-модель бионического протеза руки MAXBIONIC

Два метода моделирования и их суть

Подходы настолько отличаются, что специалист по моделированию персонажей для игр, может никогда не открывать ни одной САПР-программы (системы автоматизированного проектирования). Хотя речь всё о том же 3D-моделировании.

Полигональное моделирование

Суть метода в том, что модели создаются с помощью полигонов — поверхностей, задающихся точками. Точки можно двигать, тем самым формируя модель, ориентируясь на внешний вид и интуицию. Это в большей мере творческая работа, здесь зачастую нет привязки к реальным единицам измерения.

Полигоны

Пример низкополигональной модели на 220 полигонов

Процесс создание простой 3D-модели с помощью полигонального моделирования:

Метод зачастую используется, если моделируемый объект не выйдет за пределы экрана, то есть не будет воссоздан в реальном мире. Так, например, создаются игровые и мультипликационные персонажи.

Создавать высокоточные виртуальные объекты с помощью данного метода сложно, ведь процесс скорее напоминает лепку из пластилина, но на компьютере. Но его также можно использовать для проектирования вещей, для которых в производстве не важна  высокая точность и соблюдение размеров.

Моделирование в САПРах 

САПР или CAD (англ. Computer-Aided Design) — программа, где модели задаются формулами, а не полигонами. Это позволяет достигать точности до долей миллиметра, поэтому метод широко используется для проектирования моделей, которые не только выйдут за пределы экрана, но и пойдут в массовое производство. Например, для создания моделей деталей, которые будут отлиты на заводе, автомобилей, двигателей, зданий, мебели, самолётов.

Процесс моделирования выглядит так:

Если сравнивать этот метод с полигональным моделированием, то разница примерно как с растровой и векторной графикой. Даже предельно высокополигональная модель (с таким количеством рёбер, что самый мощный компьютер виснет при попытке её отобразить), будет иметь неровности при приближении, в САПРах же любая поверхность идеально гладкая.

Этот метод также хорош тем, что модели задаются с помощью параметров, поэтому в любой момент можно скорректировать необходимые показатели (например, поменять высоту объекта или диаметр отверстия) и перестроится вся модель. Но с его помощью создавать сложные органические модели крайне нецелесообразно — проектирование идеально гладкого игрового персонажа займёт неоправданно много времени.

Расширения

После того, как многоугольная сетка построена, необходимо предпринять дальнейшие шаги, прежде чем она станет полезной для игр, анимации и т. Д. Модель должна быть наложена текстура для добавления цвета и текстуры к поверхности, и ей должен быть задан скелет для анимации. Сеткам также можно назначать веса и центры тяжести для использования в физическое моделирование.

Чтобы отобразить модель на экране компьютера вне среды моделирования, необходимо сохранить эту модель в одном из форматы файлов перечисленных ниже, а затем используйте или напишите программу, способную загружаться из этого формата. Двумя основными методами отображения трехмерных полигональных моделей являются: OpenGL и Direct3D. Оба эти метода можно использовать с 3D-ускорением или без него. видеокарта.

Приемы моделирования объектов

Конструирование с помощью вершин

Основу сетки составляют прямоугольные ячейки, каждая имеет свои вершины, с их помощью происходит редактирование. Что бы создать другой объект, необходимо произвести манипуляции с точками вершин.

В качестве наглядного примера, используется куб, затем, активировав F9, не снимая выделения, переходят в режим редактирования вершин. Задействовав инструмент Move Tool, верхние точки перемещаются, так, что бы примитив принял другую форму. При необходимости сохранить симметрию, удобней всего воспользоваться инструментом Scale Tool.  Воспользовавшись различными инструментами можно добиться совершенно уникальных результатов, например, при вращении, вершинах приобретут спиралевидную форму.

Кроме всего прочего, для вершин существует уникальный метод стёсывания, позволяющий создавать множество граней из одной.

Использование рёбер в проектировании

Этот метод схож с предыдущим, редактирование рёбер осуществляется по тому же принципу, что и с вершинами. На практике это работает следующим образом: в качестве базового элемента создаётся куб, при нажатии клавиш F10 активизируется редактор рёбер. Далее, в качестве примера вытягивается одна и противоположных граней ребра. После чего, появится дополнительная плоскость, такую же операцию можно повторить и с соседними рёбрами.

Проектирование моделей с помощью полигонов

Сразу стоит отметить, это наиболее распространённый метод создания сложных объёмных конструкций. В этом случае работа проводится с полигонами, производя различные манипуляции можно менять форму, размер, создавать более сложные объекты. Как и в предыдущих примерах, редактирование происходит по аналогичному сценарию. Активизировав клавишу F11, запускается редактирование полигонов, предварительно выделив один из примитивов, можно работать с гранями, меняя их положение.

Дополнительно доступно множество приёмов по преобразованию граней.

При разбивании грани на две части, создаётся ещё одно ребро. После активации команды правка, курсор мыши изменится, после этого стоит выделить вершины нового ребра и выйти из режима правки, кликнув на пустом поле. После этого можно совершать любые действия относительно новых рёбер.

Подготовка модели для последующих инженерных изысканий

 В тот момент, когда дизайнер формирует техническое основание и задание для дальнейшей разработки проекта инженером, необходимо определить концептуальное направление работы над моделью объекта. Для дальнейшего производства объекта модель может быть разработана двумя основными подходами:

  1. Создание параметрической модели на основе задания без исходной модели.
  2. Реверс инжиниринг на основе исходной модели.

Второй подход способен ускорить процесс создания параметрической модели. То есть, если при создании эскизной полигональной модели были соблюдены общие габариты объекта либо его пропорции, то для создания параметрической модели возможно использование вершин полигонов в качестве управляющих вершин кривых, образующих поверхности параметрической модели (рис.4).

Рис.4. Слева направо: низкополигональная модель, высокополигональная модель, параметрическая модель.

Такой метод имеет недостатки при определенных требованиях качества поверхности. При сочленении нескольких сложных поверхностей, образованных таким методом, не всегда возможно выполнить требования поверхности класса «А» (рис.5).

Рис.5. 1-курватура непрерывности поверхности, образованной на основе полигональной модели, 2 — курватура поверхности, соответствующей требованиям поверхностей класса «А»

Полигональный метод моделирования является оптимальным инструментом для реализации эскизного проектирования форм. Помимо возможности визуализации концепции формы данный метод позволяет дать основание для быстрого перевода модели со стадии эскизирования на стадию инженерной разработки.

Промышленное моделирование

Системы Автоматизированного Проектирования (САПР) и или по-английски CAD (Computer-Aided Design) применяют для создания 3d моделей в первую очередь промышленного назначения. Они предназначены для создания точных копий реальных объектов.

При данном виде моделирования учитываются не только малейшие зазоры, но и свойства материала моделируемого объекта. В связи, с чем данный вид моделирования нашел широкое применение в инженерном деле. Особенность этого моделирования в том, что для создания модели не используют полигоны, а цельные формы.

Промышленное моделирование можно разделить на следующие подвиды: параметрическое, твердотельное и поверхностное.

Параметрическое моделирование

Параметрическое моделирование осуществляется путем введения требуемых параметров элементов модели, а так же соотношение между ними. Иными словами создается математическая модель с нужными параметрами, изменяя которые можно создать различные комбинации модели и тем самым избежать ошибок, внеся необходимые корректировки.

Является достаточно старым и самым простым способом проектирования промышленных деталей и механизмов.

Твердотельное моделирование

Если при полигональном моделировании куб разрезать пополам, то там внутри будет пустота. При твердотельном моделировании, если разрезать куб, то там не будет пустоты, как если бы разрезали реальный твердый предмет.

При построении модели работают сразу со всей оболочкой, а не с отдельными поверхностями. Сначала создается простая форма оболочки, например, сферы, а затем к ней применяют различные операции: резка, объединение с другими телами, булевые операции и др.

Твердотельное моделирование идеально подходит для создания твердых 3d моделей несложной формы: шестеренок, двигателей, и т.д., но не применим к созданию мягких: мятой одежды, животных и т.д.

Поверхностное моделирование

Поверхностное моделирование, обычно, используется для создания поверхностей сложных форм: автомобилей, самолетов и т.д.

Модель строится из различных поверхностей, которым придают нужную форму, а затем соединяют между собой, например, плавными переходами, а лишнее обрезают. Таким образом, форма нужной оболочки объекта собирается из нескольких поверхностей.

Примерами программ для промышленного моделирования являются: «Compas-3D», «SolidWorks», «Solid Edge» и т.п.

Моделирование метасферами

Так же следует упомянуть о таком моделирования как «Metaball», то есть моделирование метасферами.

Аналогично сплайновому или NURBS моделированию данный вид позволяет создавать модели сглаженной формы. Его особенность в том, что модель строится из 3d объектов сглаженной замкнутой формы (метасфер), которые при соприкосновении друг с другом автоматически сливаются частями соприкасающихся поверхностей. Метасферы как бы притягиваются друг к другу подобно каплям воды или ртути.

На рисунке показаны метасферы до соприкосновения и после.

При помощи «Metaball» легко создавать, например, капли росы на листьях деревьев, различные кочки или прыщи на коже персонажа.

Примером программы, в которой возможно моделирование метасферами является Blender.

Необходимый набор для сборки, схемы и развертки полигональной фигуры

Позаботьтесь о хорошем, удобном столе и стуле, нужно, что освещение падало из-за левого плеча, используйте настольную лампу. Чтобы не выпачкать стол клеем застелите его плёнкой или положите лист стекла с зашлифованными краями, чтобы не порезаться. Чтобы научиться складывать базовые изделия, вам понадобятся простые приспособления вроде ножниц, канцелярского ножа, клея ПВА и кисточки для его нанесения.

Отдайте предпочтение строительному клею ПВА — из всех разновидностей у него наиболее густая консистенция, он не портит бумагу, делая её мокрой и вязкой, как обычный. Используются разные виды — от папиросной до обычного картона. Новичкам советуют начинать с акварельной, в 200 грамм на м2 для крупных элементов и чертёжной разновидности 140-160 грамм – при разработке мелких частей.

Бумага для паперкрафта и клей для бумажных моделей

Основным материалом для создания является, естественно, обычная бумага, но так как она не сильно надёжная и хрупкая, советуем обратить внимание на полукартон, либо же обыкновенный картон. Детали из него более крепкие и придают готовому творению износостойкость

Удивительный кит с подсветкой—эксклюзивный ночник в спальне вашего ребёнка

У каждого мастера имеются свои секреты, вот и мы хотим поделиться с вами открытием.

Заготовки гораздо удобнее приклеивать узким двухсторонним скотчем. Он скрепляет моментально и угрозы “расклеиться” ваше творчество не потерпит.

Но также неплохой связующий предмет для элементов – клеевой раствор. Выбирайте вариант, который удобнее.

Модель из бумаги

Рабочий процесс создания проходит в несколько простых этапов. Перед началом процесса мастер определяется, какую фигурку он хочет сконструировать. На самом деле, можно смастерить практически любое изделие, но бумажное моделирование чаще предполагает такие варианты:

  • многогранники с выпуклыми и вогнутыми углами, геометрические фигуры
  • копии зданий в масштабе
  • макеты автомобилей премиум класса
  • танки, тяжелые орудия, бронемашины
  • поезда, корабли и подлодки, самолеты

Бумага для моделирования—основной рабочий материал

Следует уделить особое внимание её качеству! Для начального творчества лучше всего использовать обыкновенные листы формата А4, они имеют хорошее качество и является самой белоснежной по отношению к другим маркам. Плотность – 80 г/м

Советую приобретать специальную, для черчения.

Полигональное моделирование автомобилей

Использованные приложения: 3ds Max, Maya

Али Измаил поведает нам теорию и основы полигонального моделирования автомобилей в 3ds Max и Maya

В этом уроке мы рассмотрим создание полигональных мешей с высококачественными изгибами, с целью получить более качественные отражения. Урок предназначен для художников, которые имеют опыт в моделировании сложных полигональных поверхностей, таких как автомобили, но хотят улучшить свои знания в данной теме. Используя в качестве примера корпус автомобиля, те же принципы вы сможете применить и на любые другие отражающие объекты, будь то корабль, футуристический концепт поезда или же сложный водопроводный кран.

Поскольку это урок по моделированию автомобиля, мы не будем углубляться в детали базового процесса создания меша, специальных инструментов или подгонку основных пропорций под референс, что намного лучше описано в уроках по общим принципам моделирования или твёрдых поверхностей. Стоит отметить ещё одну важную вещь, что уровень качества, который предполагает данный урок, подразумевает рендеринг объекта с отражением непрерывной полосой вдоль него. Но если всё что вам нужно, это отражения окружения HDR неба и вы не беспокоитесь об искажении отражений, которые не заметит не натренированный глаз, то этот урок вам вряд ли пригодится.

Главная причина создания этого туториала это другой урок, который я создал много лет назад, когда только начинал свой путь в 3d графике и который существует и по сей день (Making of Mercedes S600). Я чувствовал, что нужно перейти к углублённому пониманию тонкостей автомобильного моделирования и объяснить основные принципы, которые отличают его от других типов 3d моделирования.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий